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Abstract: In this work we study Germanium (Ge) enrich-

ment in Si(1-x)Gex thin films for in-plane stress engineering 

in advanced FDSOI nodes. We detail in the following the 

different technological steps locally yielding in-plane com-

pressive strain into the channel of UTBB devices. To that 

end, we used the so-called Self-Aligned In-Plane Stressor 

(SAIPS), an appealing architecture which was recently 

proposed as a solution to enhance carrier mobility. By in-

troducing SiGe selective regrowth within state of the art 

14nm FDSOI process, we report the highest compressive 

strain value (-1.1 GPa) achieved in SiGe UTBB devices.  

 

1. Introduction 

Current CMOS technological nodes [1] are at the heart of 

intense efforts with multiple architectures being proposed to 

improve performances at competitive costs. With a low pro-

cess complexity and a good power consumption and perfor-

mance tradeoff, Fully depleted planar devices (UTBB) are 

among the best candidates to introduce stressors in aggres-

sively scaled technological nodes. A recent approach to such 

performance enhancement has been proposed in planar tech-

nologies. It consists in locally introducing uniaxial compres-

sive stress in the sources/drains (S/D) regions of p- 

MOSFETs, the aim being to increase hole mobility in short 

gate length channels (SAIPS) [4][5][6]. FDSOI [2] is an out-

standing platform to take advantage of such a concept. While 

[2][6] report on SAIPS application to Si-channel FDSOI, this 

technique was shown beneficial to SiGe channels [4]. In this 

paper, we discuss the process sequence that allows SAIPS 

performance enhancement in state-of-the-art SiGe pFET 

FDSOI devices.   

  

The high Ge content SD regions at the core of SAIPS devices 

enable to tune the in-plane film stress. In a nutshell, higher 

Ge incorporation leads to higher in-plane compressive strain 

which results in hole mobility enhancement. 

It was earlier reported through TCAD simulations that strains 

close to -1GPa should be achievable through the incorpora-

tion of approximatively 50% of Ge in SiGe stressors [7]. 

Using of a state of the art 300 mm CMOS integration flow 

(Figure 1), we focused on the Ge enrichment process, in or-

der to inject controlled amounts of compressive strain in the 

channel underneath the gate. We then developed selective ep-

itaxies of really high Ge content layers and investigated the 

epitaxial re-growth of lower Ge content SiGe:B layers on top.  

2. Results 

 

2.1 Experimental details 

   SiGe Selective Epitaxial Growth (SEG) was carried out 

in a commercial 300mm Applied Materiel Rapid Thermal 

CVD (RTCVD) reactor. The enrichment step was performed 

using a Rapid Thermal Oxydation (RTO) process. Oxide was 

removed thanks to HF diluted in water. Strain characteriza-

tion was performed using Transmission Electron Microscopy 

(TEM) coupled with Precession Electron diffraction (PED). 

 

2.2 Technology and process flow 

The 14FDSOI STMicroelectronics technological plat-

form was used to fabricate SiGe devices with local stress en-

gineering (Figure 2). A nominal 𝐿𝑔  = 20𝑛𝑚[2] and a 23% 

SiGe channel served as our base architecture.  

 

2.2.1 SiGe selective Epitaxy 

We developed a dedicated selective epitaxial regrowth pro-

cess on the SiGe channel layer in order to enable SAIPS (Fig-

ure 3). Surface preparation, temperature control and selectiv-

ity optimization were key to keep the stack 2D and defects 

free for high Ge concentrations will be discussed.   

 

2.2.2 Germanium enrichment 

Based on previous simulations and experimental stud-

ies[3][4][7], two different Ge enrichment approaches are de-

veloped on the patterned wafers: the full enrichment (Fig. 4a) 

and the partial enrichment (Fig. 4b) processes. We employ a 

Rapid Thermal Oxidation to increase the Ge fraction on each 

side of the channel in S/D areas. Following SiGe epitaxial re-

growth, Ge diffused during RTO towards the buried oxyde 

(Fig. 4) [4]. In the full enrichment case, we obtained a ho-

mogenous SiGe layer 44% in the <100> direction, this in the 

S/D regions and in the channel. In the partial enrichment case, 

we had SiGe 44% S/Ds on each side of the gate while keeping 

our SiGe 23% channel intact (Fig. 4). 

 

2.2.4 Source/Drain re-growth 

In order to allow a selective S/D SiGe35%:B epitaxial re-

growth after enrichment, we had to optimize surface prepara-

tion and temperature control as we were operating on higher 

Ge content SAIPS layers than usual (44% vs 23%). We were 

successful as shown in (Figure 3). 
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2.2.5 Final results 

Working on Epitaxy and Ge enrichment, we developed two 

approaches. The full Ge enrichment leads us to create a de-

vice on homogenous SiGe 44% channel starting from SiGe 

23%. On the other hand, we demonstrate the benefit of a local 

Ge enrichment (partial Ge enrichment) in the S/D regions us-

ing the SAIPS technique. We archived a -0.8% compressive 

strain (Figures 5 and 6), i.e. a -1.1GPa uniaxial stress in the 

SiGe channel underneath the gate compare to the reference 

process flow. 

 

3. Conclusions  

   This study performed in a CMOS manufacturing environ-

ment demonstrates that it is possible, with a few additional 

process, to boost the uniaxial compressive strain in advanced 

FD-SOI pMOSFETs. Increasing further the Ge content in the 

SiGe:B layers grown on top could be another key to further 

increase the embedded strain.  
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Figure 1: SAIPS Process Flow from STD 

route. 

Figure 4: EDX after Ge enrichment and S/D regrowth 

Figure 5: PED strain map after enrichment and S/D regrowth 

Figure 3: SiGe Epitaxial growth + Enrichment 
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Figure 6: PED strain profile post enrichment and S/D regrowth Figure 2: SAIPS architecture. 
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