Deep Experimental Analysis of Negative Capacitance in HfZrO_x-Based Field-Effect Transistors

Jing Li¹, Jiuren Zhou^{1,2}, Genquan Han¹, Yan Liu¹, and Yue Hao¹

¹ Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, China. E-mail:*gqhan@xidian.edu.cn ² Department of EECS, University of California at Berkeley, Berkeley, CA 94720 USA

Abstract

We demonstrate negative capacitance (NC) effect in HfZrO₂ (HZO) based FETs. It is observed that the improved SS, I_{DS} , and G_m in HZO transistors over control devices always come with the internal voltage amplification ($dV_{int}/dV_{GS} > 1$), and the V_{GS} values of that correspond to the negative slope of polarization switch, i.e. NC of HZO. The stable negative C_{FE} with its magnitude larger than the underlying C_{MOS} contributes to the non-hysteretic characteristics in the NC transistor.

1. Introduction

Negative capacitance (NC) FET is a promising candidate for ultra low power applications, due to its sub-60 mV/decade subthreshold swing (SS) by ferroelectric (FE) [1]-[3]. Many works have been reported the demonstration of NC in FE capacitor and NC FETs [4]-[6]. NC was inverstigated by measuring the voltage drop across FE V_{FE} with voltage sweeping by a time-resorded measurement [5]. Negative slope of polarization *P* versus V_{FE} curves indicating NC, has been observed in PVDF [4], BiFeO₃ [6], and PZT [7] transistors, however, all of which exhibited hysteresis.

In this work, we experimentally demonstrate NC in HfZrO₂ (HZO) FETs with hysteresis-free characteristics. Both steep SS and internal voltage gain ($dV_{int}/dV_{GS} > 1$) are dependent on negative slope *P*-*V*_{FE} in HZO.

2. Performance Improvement in NC transistors

Fig. 1 shows the schematic of the NC Ge pFET integrated with 4.5 nm HZO and control MOSFET. The fabrication process was described in [8]. Fig. 2(a) shows the measured I_{DS} - V_{GS} of a pair of NC Ge pFET and control device with a gate length L_G of 3.5 µm. NC transistor achieves the improved I_{DS} compared to the control device. Point SS versus I_{DS} curves in Fig. 2(b) show that the NC transistor has the improved SS over control. Fig. 2(c) shows that NC transistor obtains the significantly improved transconductance G_m over the control device. The statistical plots in Fig. 3 show that NC pFETs achieve 35.6%, 51.3%, and 63.5% performance improvement in I_{DS} , G_m , and average SS, respectively, compared to the control devices.

3. Polarization Switch in Ferroelectric

During the sweeping of V_{GS} , V_{int} can be extracted in NC transistor based on the fact that I_{DS} - V_{int} curve of NC transistor is exactly the same as the I_{DS} - V_{GS} curve of the control device. We, thus, plot the extracted V_{int} - V_{GS} and dV_{int}/dV_{GS} curves for NC device in Fig. 4(a) and (b), respectively. $dV_{int}/dV_{GS} > 1$ is obtained at a wide range of V_{GS} , leading to

Fig. 1. Schematics of the fabricated NC Ge pFET integrated with 4.5 nm HZO and control MOSFET.

Fig. 2. (a) Measured I_{DS} - V_{GS} curves for a typical NC Ge pFET and control device. (b) Point SS versus I_{DS} characteristics of the same pair of devices. (c) G_m as a function of V_{GS} curves of the devices.

Fig. 3. Statistical plots of (a) I_{DS} , (b) G_{m} , and (c) average SS showing the improved electrical performance in NC Ge pFETs compared to control MOSFETs.

the steeper SS over control device in the whole measuring range of I_{DS} .

In NC transistors, the steep SS and hysteresis characteristics are dependent on the *P* switching in FE film. During the sweeping of V_{GS} , *P* of HZO is approximately equal to the charge density in channel region [9], due to the equal charge stored in C_{FE} and C_{MOS} , which can be achieved from capacitance curve integral. Fig. 5(a) shows the extracted C_{MOS} as a function of V_{GS} curves for NC transistor, based on the V_{int} - V_{GS} in Fig. 4(a) and the measured C_{G} - V_{GS} curves of control device. Accordingly, the *P*- V_{GS} curves of the device are obtained and shown in Fig. 5(b).

To get a deep insight into the NC in transistors, $P-V_{\text{FE}}$ curves of HZO of the devices are plotted in Fig. 6(a). Load-

lines, which was introduced in [10], are represented for the relation between distribution of V_{GS} and stored charge of underlying C_{MOS} . As shown in Fig. 6(a), the intersection of

Fig. 4. Extracted (a) V_{int} and (b) dV_{int}/dV_{GS} versus V_{GS} characteristics for the NC Ge pFET.

Fig. 5. (a) Extracted C_{MOS} - V_{GS} and measured C_{G} - V_{GS} curves of control device for NC transistor. (b) P- V_{GS} curves for the NC pFET with forward and reverse sweeping.

loadlines and P- V_{FE} curves decides the biasing voltages for C_{FE} and C_{MOS} [1], [3], [11]-[13]. Both forward and reverse sweeping demonstrate a wide negative slope region at V_{GS} -0.5 ~ 0.5 V, which contributes to the steeper SS of NC transistor compared to the control device. It is observed that the NC region, especially for the subthreshold region (0 V < V_{GS} < 0.4 V) has the much smaller P and the lower negative maximum V_{FE} values compared to the measured remnant P and coercive field, respectively, of HZO [14], [15]. It is speculated that the working mechanism of NC is not the switching of complete domain, but the domain wall.

We further compare the extracted $C_{\rm FE}$ i.e. $dP/dV_{\rm FE}$, and $C_{\rm MOS}$ values in NC Ge pFETs in Fig. 6. From onset of NC, the magnitude of negative $C_{\rm FE}$ in transistor is always larger than $C_{\rm MOS}$ whatever forward or reverse $V_{\rm GS}$ sweeping [Fig. 6(b)]. The stable polarization switching is responsible for the non-hysteretic characteristics. In addition, the large internal gate gain $dV_{\rm int}/dV_{\rm G} > 1$ results from the small difference between $|C_{\rm FE}|$ and $C_{\rm MOS}$ in the subthreshold region contributing to the steeper SS over the control transistor.

Fig. 6. (a) P- V_{FE} curves of NC Ge pFET with forward and reverse sweeping. (b) Comparison of C_{FE} and underlying C_{MOS} for the device.

3. Conclusions

We report the experimental study of negative slope of $P-V_{\rm FE}$ curves, *i.e.* NC effect in HZO FETs. For non-hysteretic NC transistors, the steep SS and $dV_{\rm int}/dV_{\rm GS} > 1$ occur at $V_{\rm GS}$, where NC effective is observed. This demonstrates that the NC of HZO boosts the variation rate of $V_{\rm int}$. During $V_{\rm GS}$ sweeping, the stable $-C_{\rm FE}>C_{\rm MOS}$ effect observed contributes to the non-hysteretic characteristics in device. The different NC behaviors are considered to be related to the microscopic domain wall switching in FE thin films.

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (Grant No. 61534004, 61604112, and 61622405) and the program of China Scholarships Council (No. 201706960039).

References

- [1] S. Salahuddin et al., Nano Lett. 8(2008) 405.
- [2] J. Zhou *et al.*, *IEEE International Electron Devices Meeting* (2016) 395.
- [3] Z. Krivokapic et al., IEEE International Electron Devices Meeting (2017) 357.
- [4] A. Rusu et al., IEEE International Electron Devices Meeting (2010) 395.
- [5] P. Sharma et al., IEEE Electron Device Lett. 39 (2018) 272.
- [6] A. Khan et al., IEEE Electron Device Lett. 37(2016) 111.
- [7] A. Saeidi et al., ESSDERC (2017) 78.
- [8] Jing Li et al., IEEE Electron Device Lett. 38 (2017) 1500.
- [9] J. P. Duarte et al., IEEE International Electron Devices Meeting (2016) 754.
- [10] A. Khan et al., IEEE Trans. Electron Device 63(2016) 4416.
- [11] J. Jo et al., IEEE Electron Device Lett. 37 (2016) 245.
- [12] A. Khan et al., IEEE Electron Device Lett. 38 (2017) 1335.
- [13] G. Pahwa et al., IEEE Trans. Electron Device 63(2016) 4981.
- [14] J. Zhou et al., IEEE International Electron Devices Meeting (2017) 373.
- [15] G. Pahwa et al., IEEE Trans. Electron Devic. 63 (2016) 4986.