First Demonstration of Ferroelectric Lanthanum-Doped Hafnium Oxide for InGaAs Negative Capacitance MOSFET with Sub-60 mV/dec Subthreshold Swing

Quang-Ho Luc^{1,2}, Kai Yun Zhang³, Chien Chou Fan-Chiang⁴, Yu Da Jin⁵, Huy Binh Do¹, Minh Thien Huu Ha¹, Sa Hoang Huynh¹, Ping Huang², Che-Wei Hsu¹, Sheng-Ping Wang¹, Yueh-Chin Lin¹, Edward Yi Chang^{1,2,3*}

> ¹ Department of Materials Science and Engineering
> ² International College of Semiconductor Technology
> ³ Department of Electronics Engineering
> ⁴ Institute of Photonic System
> ⁵ Institute of Lighting and Energy Photonics National Chiao Tung Univ.
> 1001 University Road, Hsinchu 300, Taiwan
> Phone: +886-3-5131502; E-mail: edc@mail.nctu.edu.tw

Abstract

In this work, we demonstrate ferroelectric (FE) La-doped HfO₂ (HLO) for the first time as a gate dielectric in order to realize InGaAs negative capacitance (NC) MOSFET. The steep subthreshold slope (SS) properties due to the NC effect are achieved at room temperature. The FE La:HfO₂ based In_{0.53}Ga_{0.47}As NC MOSFET device exhibits counter-clockwise hysteresis in I_{DS} - V_{GS} characteristics as well as the minimal SS of 37 and 21 mV/dec for forward and reverse bias sweep, respectively.

1. Introduction

Ferroelectric (FE) materials with negative capacitance (NC) effects have been proposed to overcome the thermodynamic limitation of the subthreshold slope (SS) of 60 mV/dec for enabling next generation high operation performance and low power consumption CMOS devices [1]. NC field-effect transistors (FETs) have been introduced for Si and Ge-based devices with SS < 60 mV/dec [2]-[4]. InGaAs materials, owing to their extremely high electron mobility, are proposed as n-channel candidate to replace Si. Recently, the In_{0.53}Ga_{0.47}As NC MOSFETs, using ferroelectric HfZrO2 materials, has been reported with sub-60 mV/dec SS which is the first report for III-V-based nMOSFETs [5]. In this article, we fabricate and demonstrate InGaAs NC MOSFET by utilizing La-doped HfO₂ (HLO) thin film which has been proven to be one of the most promising FE materials. The NC characteristics are obtained only for HLO-based InGaAs MOSFET in comparison with other counterparts using Al₂O₃, HfO₂, and La₂O₃ gate dielectrics utilizing identical MOS interfacial passivation technique.

2. Experimental Procedure

The epitaxial structure used in this study consisted of 50 nm p-In_{0.53}Ga_{0.47}As (5×10^{16} Be doped) channel layer and 100 nm p⁺-InP buffer layer on the p⁺⁺-InP substrate grown by solid source molecular beam method. The gate-last process was used to fabricate the In_{0.53}Ga_{0.47}As MOSFETs as described in Fig. 1. After surface degrease, 10 nm Al₂O₃

was grown by atomic layer deposition (ALD) as a dummy layer. Source/drain Si implantation was then performed and the dopant activation was carried out by rapid thermal annealing in a nitrogen ambient. The ALD precursors were TMA, TDMAH, La(ⁱPrCp)₃ and H₂O, and the ALD deposition temperature was 250 °C. After chemical pre-gate treatment with HCl and (NH₄)₂S, 10 half-cycles TMA pretreatment were performed in ALD chamber to further passivate the InGaAs surface [6] followed by 8 nm HLO deposition. Post deposition annealing (PDA) was performed at 500 °C for 5 minutes in forming gas. After TiN gate metal formation, post metallization annealing (PMA) was applied at 500 °C in N2. Finally, Au/Ge/Ni/Au S/D ohmic, and AuBe backside contact were formed. Al₂O₃/InGaAs, HfO₂/InGaAs, and La₂O₃/InGaAs were fabricated by the same process flow and MOS interfacial passivation technique for comparison.

Fig. 1 Schematic diagram of device structure and gate-last process flow for the InGaAs MOSFETs.

3. Results and Discussion

Fig. 2 shows the transfer characteristics (I_{DS} - V_{GS}) of the (a) Al₂O₃/InGaAs, (b) HfO₂/InGaAs, (c) La₂O₃/InGaAs, and (d) HLO/InGaAs MOSFETs. All devices have a gate length of 6 μ m and a gate width of 100 μ m. The point *SS* characteristics of the fabricated InGaAs MOSFETs are presented in Fig. 3. The NC property can be clearly observed for the HLO/InGaAs MOSFET, resulting in the minimum *SS* of 37 and 41 mV/dec at V_{DS} of 0.05 and 1 V, respectively (Fig. 2(d)). This is attributed to the FE effect originated by the HLO thin film.

Fig. 2 The transfer characteristics (I_{DS} - V_{GS}) of the (a) Al₂O₃/InGaAs, (b) HfO₂/InGaAs, (c) La₂O₃/InGaAs, and (d) HLO/InGaAs MOSFETs. All MOSFET devices feature a gate length of 6 μ m and a gate width of 100 μ m.

Fig. 3 The point SS characteristics against V_{GS} at V_{DS} of 0.05 V for the InGaAs MOSFETs with various gate dielectrics. The sub-60 mV/dec SS property can be observed only for FE HLO/InGaAs NC devices at V_{GS} of ~ 0.37 V.

The polarization-voltage (*P-V*) hysteresis of the HLO/InGaAs MOSCAPs is shown in Fig. 4(a). The ferroelectric hysteresis loops are obtained for HLO-based InGaAs MOS structure. The I_{DS} - V_{GS} at V_{DS} of 0.05 and 1 V, point SS follow I_{DS} and V_{GS} characteristics for the FE HLO/InGaAs NC MOSFET are shown in Fig. 4(b), (c), and (d), respectively. Very steep SS and counter-clockwise hysteresis in I_{DS} - V_{GS} characteristics can be clearly observed. This device exhibits the best point forward and reverses SS of 37 and 21 mV/dec, respectively, at a V_{DS} of 0.05 V accompanied with an I_{DS} - V_{GS} hysteresis of ~ 0.8 V. These results demonstrate that HLO/InGaAs MOSFET achieved in this work posses NC characteristics which can be attributed to the FE effects of the HLO material.

Fig. 4 (a) Polarization hysteresis loop of 8-nm HLO/InGaAs MOSCAP. The NC characteristics are originated from the FE effects. (b) Transfer characteristics (I_{DS} - V_{GS}) at V_{DS} of 0.05 and 1 V for the FE HLO/InGaAs NC MOSFET. The steeper reverse SS and I_{DS} - V_{GS} hysteresis of ~ 0.8 V are seen due to the capacitance non-match. This can be improved by adjusting the activation conditions and thickness of FE HLO materials system. The point SS characteristics against the (c) V_{GS} and (d) I_{DS} at V_{DS} of 0.05 and 1 V.

4. Conclusions

In summary, for the first time, we have proposed FE La-doped HfO_2 thin film in fabricating and demonstrating InGaAs negative capacitance MOSFETs. The minimal forward/reverse SS of 37 and 21 mV/dec are obtained. Steep SS characteristics due to the NC effect in HLO/InGaAs MOSFET device are achieved which is very promising for future ultra-low power consumption high speed III-V based logic applications.

Acknowledgements

This work was sponsored by the Ministry of Science and Technology, Taiwan, under Grant MOST 106-2221-E-009-142-MY2. The authors would like to thank to Dr. Jun-Fei Zheng and Dr. Tse-An Yeh from Entegris Inc. for their collaboration and support with the ALD precursors.

References

- [1] S. Salahuddin et al., Nano Lett. 8 (2008) 405.
- [2] M. H. Lee et al., International Electron Devices Meeting (2015) 616.
- [3] M. H. Lee et al., IEEE Electron Device Lett. 36 (2015) 294.
- [4] J. Zhou et al., International Electron Devices Meeting (2016) 310.
- [5] Q.H. Luc et al., Symposia on VLSI Technology and Circuits (2018) T5-2.
- [6] Q.H. Luc et al., ECS Solid State Lett. 3 (2014) N27.