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Abstract 
Double Heterojunction Bipolar Transistors (DHBTs) 

are intended to extend the breakdown voltage beyond 
what is possible in single heterojunction bipolar transis-
tors (sHBTs), ideally without sacrificing frequency per-
formance. The present paper contrasts the various ap-
proached to the realization of InP DHBTs. Technological 
evolution over the last two decades suggests that base 
transport properties take a secondary role to the ease of 
electron transfer from the base to the wide-bandgap col-
lector material.  
 
1. Introduction 

The idea of separately optimizing the base and collector 
in bipolar transistors with a double heterojunction architec-
ture was raised several years ago [1] but remained largely un-
exploited for GaAs-based devices. GaAs sHBTs have proven 
hugely successful commercially but offer relatively low cut-
off frequencies. The evolution toward higher operating 
speeds pushed cutting edge device R&D activities toward 
InP-based materials, but unfortunately, InP/GaInAs sHBTs 
showed approximately the same fT × BVCEO = 650 GHz-V 
product as GaAs sHBTs because of the low breakdown fields 
and poor high-field transport properties of Ga0.47In0.53As col-
lectors. This limitation motivated the development of InP-
based DHBTs with the to exploit the short base transit times 
associated with GaInAs and the high-breakdown fields and 
favorable transport properties of InP collector layers. In order 
to do this, the B/C heterojunction must be designed to prevent 
blocking of the collector current. Two types of grading 
schemes have been developed for GaInAs, namely the step-
graded launcher [2] and the chirped-superlattice collector [3]. 
An alternative to these designs relying on the “Type-II” 
InP/GaAsSb system has been developed since 1997 in our 
group [4]. 
 
2. DHBT Architectures 
Inroduction 

The need to avoid electron blocking at the interface be-
tween the narrow gap base and widegap collector was already 
raised in Kroemer`s classic paper [1] which stated: “It is im-
portant that the free collection of electrons by the reverse-

biased collector not be impeded by any heterobarrier due to 
a conduction band discontinuity. Such barriers are easily 
eliminated by grading the heterostructucture.” Kroemer rec-
ognized the importance of blocking-free collection and antic-
ipated that modern epitaxial growth techniques would allow 
the realization of effective compositional grading schemes, 
but did not consider the effects of high current densities on 
the self-consistent potential collector profile, and that transis-
tor operation can drive devices to low collector voltages (and 
even forward bias the B/C junction). The resulting collapse 
of the electric field leads to current blocking in an otherwise 
adequately graded B/C heterojunction. This work considers 
below the salient features of each collector structure. 

 
Step-Graded Launcher 

In a step-graded collector, the narrow-gap GaInAs base 
material is extended into the collector region in order to allow 

 
 
Fig. 1 Self-consistent band diagrams for different collector current 
levels for a Type-II abrupt collector (top) contrasted to that of a 
CSL collector with a GaInAs base. High current space charge ef-
fects result in blocking when a GaInAs base is used. 
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electrons to gain enough kinetic energy to overcome the con-
duction band discontinuity with InP. More than one compo-
sitional steps maybe use to facilitate the transition. The inher-
ent shortcoming of this approach is associated with the pres-
ence of a peak in electric field in the minimum bandgap 
GaInAs setback layer near the base region. Breakdown volt-
ages are limited by interband tunneling in the setback GaInAs 
layer. 

 
CHIRP Superlattice (CSL) Collector 

In the so-called CHIRP superlattice collector, the composi-
tional grading to InP is accomplished through a variable duty 
cycle short period superlattice. CHIRP in fact stands for “co-
herent heterointerfaces for reflection and penetration,” and 
was originally a structure intended to achieve negative differ-
ential resistance [5]. In the best case scenario under a bias re-
sulting in full alignment of the miniband, transport can simply 
not be better than in bulk GaInAs because minibands neces-
sarily feature flattened E vs. k dispersion relations compared 
to bulk GaInAs. Next, voltage and current swings tend to 
bring the minibands out of resonance, disrupting current flow 
as shown in Fig. 1. When a GaInAs setback layer is used near 
the base, the CSL shares the short-coming of the step-graded 
collector, i.e. a tunneling-limited low breakdown voltage. 
 
Type-II Staggered Launcher 

The Type-II staggered launcher uses a GaAsSb (or more 
recently GaInAsSb) base layer forming an abrupt staggered 
junction with the InP collector in such a way that the base 
conduction band lies above that of InP. Our Group largely pi-
oneered this approach since 1997, first in Canada and then at 
ETH-Zürich. InP/GaAsSb DHBTs have now been shown 
with maximum oscillation frequencies exceeding 1.1 THz [6] 
per conventional de-embedding methods. Whereas GaAsSb 
base layers have a lower electron mobility than GaInAs, 
InP/GaAsSb DHBTs show higher current gain cutoff fre-
quencies fT than GaInAs based devices with a comparable 
fMAX and/or base and collector thicknesses. 
 
3. Simulations 
Inroduction 

To understand the aforementioned observations, the three 
types of base/collector designs were simulated in a quantum 
transport device simulator (OMEN [7]) based on the empiri-
cal nearest-neighbor tight-binding method to understand how 
electrons move from the base (GaInAs or GaAsSb) to the InP 
collector. The calculations use accurate ab initio atomistic 
band structures rather than back-of-the-envelope Γ-valley 
band edge profiles interpolated from the binary components, 
and quantum transport as opposed to the classical drift/diffu-
sion techniques used in commercial TCAD simulators (which 
only account for the density-of-states effective masses and 
carrier mobilities/diffusivities, whereas details about differ-
ent energy band valleys, their proximity, and interactions are 
simply omitted, as are quantum mechanical reflections at po-
tential barriers). 

Various collector designs were simulated in order to un-
derstand the involved trade-offs. Whereas all collectors show 
a decreased performance at high current densities that can 

loosely be attributed to the Kirk effect as seen in Fig. 1, 
transport in the Type-II collector is clearly less strongly af-
fected by high-current effects. As one might expect from the 
Type-II band diagram in Fig. 1, the electron velocity is least 
sensitive to the collector current density in the InP/GaAsSb 
system —it also results in the shortest simulated base/collec-
tor delay time. In contrast, the CSL band diagram results in 
severe perturbation for the electron collection as current in-
creases which has been related to device nonlinearities.  
 
4. Recent Experimental Advancements  
InP/GaAsSb and InP/GaInAsSb DHBTs 

Recent work has focused on achieving a better under-
standing of device operation and optimizing frequency per-
formance in ternary and quaternary base DHBTs. Fig. 2 gives 
the RF performance of a quaternary graded-base device 
showing the best performance ever achieved in a quaternary 
base DHBT. To the best of our knowledge it is also the high-
est fT for a DHBT with fMAX > fT. 
 
5. Conclusions 
   Our conference presentation will expand on these find-
ings and their interpretation. The simulations will be used to 
highlight the fundamental limitations of InP/GaInAsSb 
DHBTs. 
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Fig. 2 Measured RF performance of a 0.3 ˟ 3.5 µm2 emitter quater-
nary graded-base InP/GaInAsSb DHBT. To our knowledge, this is 
the highest fT ever achieved in a DHBT with fMAX > fT.  
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