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Abstract Size-modulated trenches & fins
The surface electric field (E-field) optimization of the st 1 th
AlGaN/GaN devices is very important because the 2DEG l% °°c 1—0*
" GaN Qnmm)

channel is located extremely close to the surface. In this

work, a novel RESURF structure comprising size-modu- F
lated nano-trenches and fins (NTFs) is proposed and
demonstrated. The effectiveness of the NTF-structure in
reducing the surface E-field is confirmed by the TCAD IDEG
simulation and the experiment. Benefitting from the NTF-
structure, the Schottky junctions on AlGaN/GaN exhibit
improved performance including leakage and electron
trapping under reverse bias.

Wrin AlGaN (23 nm)

Dy -

Fig. 2 Schematic cross section of the NTF-structure.

1. Introduction Table I Key Sizes of the NTF-structure

The REduced SURface Field (RESURF) technology [1] Trench Trench T
is widely used to prevent the lateral power semiconductor de- No. Depth Width Fin Width
vices from premature breakdown. For AlGaN/GaN hetero- Dt (nm) Wr (nm) W (nm)
structures, they are typical lateral structures with the 2DEG 1 30 700 150
channel located extremely close to the surface. Therefore, it 2 29 500 170
is very important to optimize the surface electric field (E- i %g 38 ;gg
field) of the AIGaN/GaN devices. Several RESURF schemes 5 75 100 240
have been proposed for the AlGaN/GaN devices including 6 22 90 260
field plate [2], recessed gate edge [3], ion implantation [4], et 7 15 70 280
al. In this work, a novel RESURF structure comprising size- 8 11 60 300
modulated nano-trenches and fins (NTFs) is proposed and ex- 190 Z i 8 288

perimentally demonstrated. Moreover, the NTF- structure can
be used not only as a termination but directly as a gate struc-

ture for HEMTSs or an anode structure for diodes. (@) 1 (b) — ;
1 trench 52.0 NTF-SBD
>

2. NTFs design, fabrication, and characterization
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As shown in Fig. 1, the 2DEG density is dependent on the e %1-5
thickness of the AlGaN barrier and the width as well as the ety 210
height of the Fin-AlGaN/GaN [5]. Based on these principles, | i Mo
the NTF-structure (Fig. 2) is specifically designed to achieve [ It W 0.0

a lateral-gradient distribution (LGD) of the 2DEG. As sum- 2DEG Distribution Lateral Position (pm)4
marized in Table I, the depths and the widths of the nano-

trenches are gradually decreasing while the fin widths are [ ] ]
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Fig. 3 TCAD simulated (a) 2DEG distribution in the NTF-anode at
Va=0 V, E-field profiles in the anodes of (b) the NTF-SBD, (c) the
Fig. 1 Schematic cross section of the Fin-AlGaN/GaN. FR-SBD and (d) the Conv.-SBD at Va =-100 V.
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TCAD simulation was performed to investigate the LGD
of the 2DEG as shown in Fig. 3(a). The simulated £-field pro-
files of the SBDs with NTF, Fully Recess (FR), and conven-
tional anode structures are compared in Fig. 3. Under reverse
bias, due to the LGD of the 2DEG, the single E-field peak in
the Conv.-SBD is decentralized into multi £-field peaks in the
NTF-SBD while the maximum E-field peak is also remarka-
bly reduced. Such uniform E-field distribution is favorable
for enhancing the reverse blocking characteristics.
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Fig. 4 (a) 3D AFM image of the NTF-structure. (b) Trenches depths
profile along the 4-A4' direction. (¢) Top view SEM image of the
NTF-structure. (d) Trench-width dependent etching rates.

The NTF-structure fabrication commenced with the nano-
trenches patterning by e-beam lithography, followed by sin-
gle-step Clo/BCls-based inductively coupled plasma (ICP)
etching. Fig. 4(b) shows the measured trenches depths profile
along the A-A4' direction, manifesting that the depth and the
width of the nano-trenches are gradually decreasing. It is
worth noting that the depth gradient decreasing is achieved in
a single ICP etching step due to the etching rate is trench-
width dependent as summarized in Fig. 4(d).
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Fig. 5 Reverse bias -V curves of the (NTF, FR, Conv.)-SBDs. Inset:
10 V reverse bias /-V curve of the NTF-SBD.

As shown in the inset of Fig. 5, three turning point at Va
of —0.6, —3 and —4.6 V are observed in the small reverse bias

I-V curve of the NTF-SBD, suggesting a gradual depletion of
the 2DEG which is related to the LGD effect. Such gradual
depletion process results in more efficient depletion of the
drift region. The leakage of the NTF-SBD is the lowest
among the three types of SBDs as shown in Fig. 5.
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Fig. 6 Transient forward current of the stressed (NTF & FR)-SBDs.
Inset: schematic measurement setup for the transient forward current.

High E-field at the cathode-side Schottky contact edge
during reverse stress could result in electron trapping which
leads to current collapse. The NTF-SBD exhibits a mitigated
current collapse compared with the FR-SBD. This is at-
tributed to the reduced surface E-field.

3. Conclusions

In conclusion, a NTF-structure with inherent LGD of the
2DEG is proposed and successfully demonstrated. Benefit-
ting from the NTF-structure, the reverse leakage and the cur-
rent collapse of the AlGaN/GaN SBD are improved. The
NTF-structure is also feasible for the gate design towards nor-
mally-off GaN HEMTs and the edge termination of high volt-
age GaN power devices.
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