
Technology-Driven Emerging Computational Models and Systems 
 

Srivatsa Rangachar Srinivasa, Nagadastagiri Reddy C, Nicholas Jao, Akshay Krishna Ramanathan, John 

Sampson and Vijaykrishnan Narayanan 

 
The Pennsylvania State University 

E-mail : {sxr5403, nrc53, naj5075, axr499, sampson}@psu.edu, vijay@cse.psu.edu    
 

Abstract 

   The landscape of device innovations is rapidly chang-

ing not only influenced by CMOS scaling nearing physical 

limits, but also due to the quest for new computational 

models that go beyond tradition Von Neumann architec-

tures.  This paper will illustrate the influence of emerg-

ing devices, memories and interconnect innovations at the 

system level. It will also highlight coordinated device-cir-

cuit-system interactions that have enabled promising new 

systems for analytics, machine learning, and internet-of-

things. 

 

1. Introduction 

The looming end of the roadmap for CMOS scaling and 

the gargantuan rise of machine learning promises an exciting 

era for semiconductors. The access to a large amount of la-

beled data and the computational capacity offered by Moore’s 

law has triggered unprecedented interest in machine learning 

innovations. The computational needs continue to grow to 

support processing of even larger datasets and design of more 

complex intelligent systems. To support this growth even as 

Moore’s law nears its end requires radical shifts in our com-

putational circuits and models. 

This paper explores two complementary circuit tech-

niques that leverage process and device technology innova-

tions. The first one focuses on in-memory computing. One of 

the significant challenges of current Von Neumann architec-

tures is the ability to move data from a separate memory into 

the processing unit. The memory wall problem is especially a 

concern when operating with deep neural networks that have 

significant amount of intermediate data and configuration 

storage requirements. The ability to compute in-situ in the 

memory reduces the need to transfer data and mitigates the 

power and performance overheads of data movement. We 

present an approach using a monolithic 3D technology to in-

tegrate logic operations on a SRAM buffer and the use of a 

cross-point memory to support multi row write for database 

applications. As a corollary, we have explored the integration 

of distributed memory elements closely with logic to support 

instant-on/instant-off processors [1]. 

The second computational paradigm focuses on physics-

based intrinsic computing. Our prior efforts have focused on 

leveraging behavior of an IMT-based Transistor for neuron 

behavior and the use of a weakly coupled system for image 

analytics [2]. In this work, we illustrate the use of weakly cou-

pled IMT-based oscillators for corner detection and indicate 

how the algorithms should adapt to tap the intrinsic computa-

tional capabilities.  

2. In-Memory Computations enabled by Monolithic 3D 

integration technology. 

   Monolithic 3D integration (M3D-IC) [3] is an emerging 

technology that overcomes integration and connectivity limi-

tations of TSV based integration. Through high density inter-

connects (M3D via), storage nodes of the SRAM cells are di-

rectly accessible which further paves way for novel In-

Memory computation support. Several published works ena-

ble bitwise Boolean operations at the cell level granularity [3] 

[4]. Arithmetic operations can also be performed by combi-

nation of computing at the cell level and array level [5].  

   Convolution operation is one of the most common and a 

primitive computation employed by various machine learning 

algorithms including Convolutional Neural Networks (CNN). 

Convolution operation has two parts to it represented by 

equation 1. First one is the multiplication of weights and the 

feature vectors and the second part is adding the bias.  

 

       𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = ∑ 𝑊𝑖𝑋𝑖 + 𝑏𝑖        (1) 

 

Fig. 1 shows the computation of convolution by a standard 

Von-Neumann computer and an In-Memory processor ena-

bled by M3D-IC. Due to very high number of computations 

involved, output of the first step needs to be stored and then 

retrieved from the memory for adding the bias. The steps in-

volved in computing is shown in fig. 1(a). Frequent data 

movement in and out of the memory will cause computation 

slow down and huge energy consumption. While In-memory 

computational support enabled by the M3D-IC helps in re-

ducing the data traffic through the highly parasitic intercon-

nects. Fig. 1(b) pictorially represents the 3D-SRAM memory 

structure and the computational steps. Once the output of step  

 
Fig. 1 computing the convolution function. (a) Frequent data move-
ment in and out of the memory. (b) In-memory computations ena-

bled by M3D-IC technology reduces frequent data movement out 
of the memory.    
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1 is stored in the memory, bias can be added to it to obtain the 

final result in parallel across the subarrays. This offers less 

data movement and computations in parallel and thereby 

providing energy efficiency.  

 3. Conditional Multi Write (CMW) in cross point NVMs 

  We have designed a cross point based Phase Change 

Memory (PCM) capable of performing conditional multi 

write operations (CMW). CMW searches for a particular data 

within the memory and replaces all its occurrences with the 

desired data on the matched rows. To search for the required 

data, we configure the peripherals to achieve the CAM func-

tionality. Search voltages are asserted on the bitlines, word-

lines are kept floating and ref.voltages are set according to the 

match voltage. Matched data is responsible for charging the 

wordlines. SA outputs a HIGH voltage if the wordline voltage 

is greater than the ref.voltage. SA output is fed into the WL 

WRITE DRIVER (fig. 2) which intern determines whether or 

not the wordline is biased for write mode. While, BL WRITE 

DRIVER prepares the write data. Once multiple rows are as-

serted in this way, operation is completed. Many of the search 

and replace queries in database workloads will benefit from 

this logic.  

 

4. FAST Corner Detection using Coupled Oscillators      

    Features from Accelerated Segment Test (FAST) corner 

detection algorithm compares a pixel with its surrounding 16 

pixels on a Bresenham circle of radius 3. If the pixel is either 

darker or brighter than the N contiguous pixels on the circle, 

it will be marked as a corner. It involves systematic parallel 

comparisons uniform across all the pixels which makes it a 

favorable candidate for hardware acceleration. Coupled oscil-

lator is one of the well-known paradigms in non-Boolean 

computing platforms and has been used for several image 

processing applications [6] [7]. Coupled oscillator exhibits 

tunable resistive and capacitive coupling with the input volt-

ages and can be leveraged to find the input voltage difference 

[6]. We use this principle to map the comparison operation in 

FAST algorithm to coupled oscillator based design. Fig. 3 

shows the overall dataflow design of the mapping. Two stages 

of comparison operations are needed to identify whether a 

pixel is a corner. In the first stage, pixel under test will be 

compared with the surrounding pixels to identify if it’s either 

brighter or darker than N contiguous pixels (this comparison 

gives only the magnitude of difference but not the direction). 

In the second stage, to avoid the interleaved bright-dark cases, 

N contiguous pixels identified from the first stage will be 

compared with each other to identify whether they are all sim-

ilar. We used the experimental graphs modelling the behavior 

of coupled oscillator [6] to evaluate the algorithm and com-

pared with the reference algorithm. Albeit approximate com-

puting, coupled oscillator based design shows performance 

comparable to the reference algorithm. 
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Fig. 3 Dataflow for FAST corner detection using coupled oscillators  

 

 
Fig. 2 Schematic representation of conditional Multi Write.  
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