Study on origin for D_{it} through SS in monolayer MoS₂/h-BN/graphite FET

^{1*}S. Toyoda, ²T. Taniguchi, ²K. Watanabe and ¹K. Nagashio

¹The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan

²National Institute of Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan

*E-mail: toyoda@ncd.t.u-tokyo.ac.jp

Abstract

Subthreshold swing (SS) for monolayer MoS_2/h -BN/graphite heterostructure FET was studied to reveal the origin for the interface states density (D_{it}). SS was estimated as ~80 mV/dec at room temperature and showed the clear temperature dependence. Based on the comparison of SS for different device structures, the origin for D_{it} is suggested to be the strain introduced in MoS₂ during the top gate high-*k* deposition.

1. Introduction

The understanding of the interface properties in high- k/MoS_2 system is crucial in ultimate scaled device research. The interface states density (D_{it}) at the high- $k/monolayer MoS_2$ interface has been reported to exhibit the band tail energy distribution [1], which is suggested to be resulted from the bond bending of Mo d orbital since the conduction and valence band of MoS₂ consist of the energy splitting of Mo d orbital in the ligand field of S. Therefore, two possible origins are expected; one is the strain introduced due to the deposition of top-gate insulator, the other is the roughness of SiO₂ substrate.

In this study, monolayer MoS_2 was placed on the atomically flat surface of *h*-BN with the graphite back gate in order to eliminate the surface roughness of SiO₂ substrate as well as the high-*k* Al₂O₃ deposition. The dominant origin for the interface states is discussed by comparing the subthreshold swing (SS) expressed as

$$SS = \frac{\ln(10) k_B T}{e} \left(\frac{C_{it}}{C_{ox}} + 1 \right),$$

where C_{it} and C_{ox} are interface states and oxide capacitances, respectively, and $\ln(10)k_{\rm B}T/e$ is ideal SS value of 60 mV/dec at room temperature.

2. Device fabrication

 MoS_2/h -BN/graphite device was fabricated on the SiO₂/Si substrate, as shown in **Fig. 1**. First, *h*-BN and MoS_2 crystals were mechanically exfoliated on a polydimethylsiloxane (PDMS) sheet separately. These crystals were transferred on graphite bulk crystal on the SiO₂/Si substrate in the order of *h*-BN and monolayer MoS_2 using the alignment system. Then, this van der Waals (vdW) heterostructure was annealed for 30 minutes at 150 °C. The Ni/Au electrodes were then formed using the electron beam lithography.

The thickness of h-BN was measured as ~9.5 nm by

atomic force microscopy (AFM). It should be emphasized that the utilization of graphite back gate is critical because the back gate capacitance of *h*-BN insulator can be increased and the effect from charged impurities in SiO_2 can be screened.

Fig. 1 (a) Schematic illustration (a) and optical image (b) of the MoS_2 vdW heterostructure FET device.

3. Characterization of vdW heterostrcure

First of all, the topography of *h*-BN/graphite on SiO₂/Si substrate was measured by AFM. Histogram of the corresponding height distribution over the 0.5×0.5 μ m² regions are presented in **Fig. 2(a)**. Compared with the SiO₂/Si substrate, the sharper distribution is evident. The root mean squares (RMS) for *h*-BN and SiO₂ were ~0.05, and ~0.1 nm, respectively.

Photoluminescence (PL) spectra were obtained from monolayer MoS_2 on different substrates, as shown in

Fig. 2 (a) Height histograms for SiO₂ and *h*-BN/graphite. (b) PL spectra of 1L MoS₂ on different substrate.

Fig. 2(b). The full width at half maximum (FWHM) of the peak for MoS₂ on *h*-BN was 0.07cm⁻¹, which was much narrower than that on SiO₂ (~0.11 cm⁻¹) as well as that on PDMS (~0.10 cm⁻¹). This could be ascribed to the reduction of inhomogeneity by the surface roughness and the charged impurities. The PL peak of the so-called A⁻ trion around 1.85 eV for MoS₂ on *h*-BN was much weaker than that on SiO₂, suggesting that the electron doping to MoS₂ from *h*-BN was limited compared with that on SiO₂ [2]. As can be seen later, the threshold voltage of MoS₂ on *h*-BN was closer to $V_G = 0$ V than that on SiO₂. These results indicate that the interaction of MoS₂ with *h*-BN is much reduced from that with SiO₂.

4. Transport properties

Fig. 3 shows the two terminal I_D - V_G characteristics of the device shown in **Fig. 1(b)** at room temperature for the V_G step of 0.005 V. The hysteresis measured at 10⁻¹¹ A was 0.0073 V. The inset shows that the SS value reaches ~80 mV/dec in the range of 10^{-13} ~ 10^{-11} A, indicating the small D_{it} .

Fig. 4 shows the temperature dependence of SS for monolayer MoS_2 on *h*-BN. The SS of 80 mV/dec at room temperature decreased with decreasing the temperature to ~40 mV/dec at 10 K. The slope was close to the ideal case. So far, SS for high-*k*/MoS₂ FET showed no temperature dependence because of large contribution of C_{it} or showed limited temperature dependence. It should be noted that the comparison of SS is possible because C_{ox} for the present *h*-BN is ~0.35 μ Fcm⁻² which is comparable with ~0.4 μ Fcm⁻² for the high-*k* Al₂O₃ gate insulator.

Finally, **Fig. 5** compares SS for monolayer MoS_2 with different device structures. It indicates that as a whole tendency, SS for MoS_2 on *h*-BN/graphite is

Fig. 3 Transfer characteristics of MoS_2 vdW heterostructure FET at RT. The inset shows SS as a function of drain current.

Fig. 4 SS as a function of temperature for MoS_2 vdW heterostructure FET.

lower than that for MoS₂ on SiO₂ with high-*k* gate deposition. On the other hand, when MoS₂ is just transferred on SiO₂ or high-*k* substrate, SS would be relatively small. Moreover, *h*-BN top gate had almost no influences on SS. This comparison clearly indicates that the deposition of high-*k* oxide degrade SS. That is, the strain introduced in MoS₂ due to the deposition would be the dominant origin for the band tail distribution of D_{it} .

Fig. 5 Comparison of SS for different device structures.

5. Conclusions

The MoS₂/*h*-BN/graphite vdW heterostructure FET was successfully fabricated. Based on the SS comparison for different device structures, the dominant origin for the band tail distribution of D_{it} is suggested to be the strain introduced in MoS₂ during the top gate high-*k* deposition.

Acknowledgements This research was partly supported by the JSPS Core-to-Core Program, A. Advanced Research Networks. **References**: [1] N. Fang, K. Nagashio, J. Phys. D, 2018, **51**, 065110.[2] K. Mak *et al.*, nature matt., 2013, **12**, 207. [3] W. Zhu, *et al.*, nature commun., 2014, **5**, 3087.