Mobility enhancement of InGaZnO_x thin-film transistor by hetero-channel with a different composition.

Mamoru Furuta¹, Daichi Koretomo¹, and Ryunosuke Higashi¹

 ¹ Kochi University of Technology 185, Miyanokuchi, Kami Kochi 782-8502, Japan
Phone: +81-887-57-2521 E-mail: furuta.mamoru@kochi-tech.ac.jp

Abstract

An IGZO hetero-channel thin-film transistor was demonstrated to enhance a field effect mobility (μ_{FE}). The μ_{FE} of hetero-channel IGZO TFT increased to 23.7 cm²/Vs which is twice as high as a conventional IGZO TFT. Carrier transport mechanism in an IGZO hetero-channel is discussed by using a device simulation.

1. Introduction

An InGaZnO_x (IGZO) thin-film transistor (TFT) [1] has been received considerable attention for use in next-generation displays owing to their excellent electrical properties. Although a field effect mobility (μ_{FE}) of IGZO TFT (10~15 cm²/Vs) is over ten times larger than that of an amorphous silicon TFT, further enhancement of the μ_{FE} is desired to expand their applications. Several approaches have been proposed to improve the μ_{FE} of oxide TFT. Among them, it is known in the IGZO material system that an increase of In content is effective to enhance the μ_{FE} of IGZO TFT since a conduction band (E_C) of the IGZO is mainly composed of an In 5s orbital. However, high In composition leads to an increase carrier concentration (oxygen vacancy) in the film, result in a degradation of TFT properties such as a negative shift of threshold voltage with hump in transfer characteristics. There are many reports of a stacked channel to improve the μ_{FE} of oxide TFT [2, 3]; however, only a few reports discussed an effect of hetero-channel on electrical properties of the IGZO TFT [4, 5].

In this study, the enhancement of μ_{FE} in IGZO TFT was demonstrated by using a hetero-channel consisting of an Inrich-IGZO on the IGZO-111 (In:Ga:Zn=1:1:1 atm.%). In addition, carrier transport in the IGZO hetero-channel TFT is also discussed based on the results obtained by a device simulation.

2. Experiments

A bottom gate IGZO TFT was fabricated on a heavilydoped p-type Si wafer with a 100-nm-thick thermally grown SiO₂, as shown in Fig. 1. The conductive Si substrate and thermally grown SiO₂ were served as a gate electrode and a gate insulator (GI), respectively. An IGZO hetero-channel consist of a 10-nm-thick In-rich-IGZO on a 10 nm-thick IGZO-111 [IGZO-In-rich/111] was deposited by RF magnetron sputtering at room temperature. The TFT with a singlelayer channel of IGZO-111(45 nm) was also fabricated as a reference. A Mo/Al/Mo (50/50/20 nm) stacked film was deposited as source/drain (S/D) electrodes. Shadow mask was used to form both the IGZO channel and the S/D electrodes. A 100-nm-thick SiO₂ film was further deposited by plasma-enhanced chemical vapor deposition. Finally, the measurement pads were opened by photolithography and plasma etching. After the whole process, fabricated TFTs were post-annealed in air at 350°C for one hour. The channel length (L) and width (W) were 350 and 1400 μ m, respectively.

Fig. 1 Schematic cross-sectional view of the TFT.

3. Results and discussion

Figure 2 showed a comparison of transfer characteristics of the IGZO111 and IGZO-In-rich/111 TFTs. Table I summarizes electrical properties of both TFTs.

Fig. 2 Transfer characteristics of the IGZO111 and IGZO-Inrich/111 hetero-channel TFTs ($V_{DS}=0.1$ V). Solid and dotted lines represent a drain current and a field effect mobility, respectively.

The reference TFT (IGZO-111) exhibited good electrical properties with a μ_{FE} of 12.5 cm²/Vs. The μ_{FE} of IGZO111 TFT (black dotted line in Fig. 2) gradually increased with increasing a gate voltage (V_{GS}). By the optimization of IGZO-

In-rich layer, similar threshold voltage (V_{th}) and sub-threshold swing (S.S.) were able to achieve for the IGZO-Inrich/111 hetero-channel TFTs. On the other hand, the on-current of the hetero TFT obviously increased at a positive V_{GS} region. The μ_{FE} of hetero-channel TFT (red dotted line in Fig. 2) exhibited 23.7 cm²/Vs at V_{GS}~10 V. It is worth noticing that the V_{GS} dependence of the μ_{FE} showed different tendency. Although a channel/GI interface of both TFTs was formed by IGZO111, a transconductance of the hetero-channel TFTs exhibited single peak at V_{GS}~10 V, whereas that of IGZO TFT gradually increased up to V_{GS} of 20 V.

Table I Sumn	nary of the	electrical	properties
	IC70 1117		70 In mish/111

	IGZO-III IFI	IGZO-In-rich/III IFI
Mobility (cm ² /Vs)	12.5	23.7
V_{th} (@I _{DS} =1nA) (V)	0.1	-1.2
S.S. (V/dec.)	0.11	0.11

To understand the carrier transport in the hetero-channel TFT, transfer characteristics were reproduced by a device simulation (ATLAS, Silvaco). Conduction band discontinuity (ΔE_C) at an IGZO-In-rich/111 hetero-interface was estimated to be 0.39 eV from an electron affinity model using optical band gap and ionization potential measurements of each film.

Fig. 3 Simulation result of the μ_{FE} of the hetero-channel TFT with ΔE_C varied from zero to 0.39 eV as a function of V_{GS} .

Figure 3 depicts simulation result of the μ_{FE} of heterochannel TFTs as a function of V_{GS} with the ΔE_C varied from zero to 0.39 eV. When the ΔE_C was set at 0.39 eV (experimental value), the experimental V_{GS} dependence of the μ_{FE} (red dotted line in Fig. 2) was able to reproduce well by a device simulation. On the other hand, simulation results suggest that the peak μ_{FE} gradually declined by decreasing ΔE_C . In this experiments, high-mobility In-rich IGZO was deposited on an IGZO-111. To enhance the μ_{FE} of the IGZO-Inrich/111 hetero-channel TFT, the ΔE_C has to be formed at the IGZO-In-rich/111 hetero-interface. In other words, single peak of a transconductance is one experimental evidence for forming ΔE_C at a hetero interface.

3. Conclusions

In summary, we demonstrated IGZO hetero-channel TFT used an In-rich IGZO on IGZO-1114 stacked channel. The μ_{FE} of the IGZO-In-rich/111 hetero-channel TFT (23.7 cm²/Vs) is two times higher than conventional IGZO TFT. The experimental results have been reproduced by a device simulation including a conduction band discontinuity at a hetero interface. Thus, an IGZO hetero-channel is effective to improve the μ_{FE} of the IGZO TFT.

Acknowledgements

A part of this work is supported by the JSPS KAKENHI Grant No. 16K06309. We would like to express sincere thanks to Dr. S. Takahashi and Dr. I. Yashima of Mitsui Mining & Smelting Co., Ltd. for their supports of experiments and discussion.

References

- [1] K. Nomura et al., Nature, 432 (2004) 488.
- [2]S. Kim et al., Tech. Dig. IEDM, (2008) 1.
- [3]J. Kim et al., Appl. Phys. Lett., 99 (2011) 122102.
- [4]S. Taniguchi et al., Jpn. J. Appl. Phys. 50 (2011) 04DF11
- [5]N. Saito et al., Proc. of IEEE Electron Devices Technology and Manufacturing Conference, (2017) 141