Nanosheet Number and Width Optimization of Multi Stacked NanoSheet FET for 7-nm Node SoC Application

Jun-Sik Yoon, Jinsu Jeong, Seunghwan Lee, and Rock-Hyun Baek

Pohang University of Science and Technology (POSTECH), Electrical Engineering 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea Phone: +82-54-279-2220 E-mail: junsikyoon@postech.ac.kr, rh.baek@postech.ac.kr

Abstract

DC/AC performances of 7-nm node nanosheet FETs (NSFETs) having different the number of NS (N_{NS}) and NS widths (W_{NS}) were analyzed using calibrated TCAD. More N_{NS} increases on-currents and gate capacitances, but longer current paths for bottom-side NS reduce additional DC performance boosts. Smaller W_{NS} achieves better gate-to-channel controllability, but decreases current drivability by decreasing effective widths as a trade-off. RC delay of the NSFETs with different N_{NS} and W_{NS} was compared to 10-nm node FinFETs and optimized.

1. Introduction

FinFETs have been successfully scaled down to 10-nm node through 7-nm-thin fin for better short-channel effects (SCEs) and dummy gate removal for high density [1]. Meanwhile, nanosheet FETs (NSFETs) have been introduced as one of possible candidates to replace FinFETs in the sub-10-nm node [2]. Above all, three-stacked NSFETs having single wide NS width (W_{NS}) were suggested to increase effective width (W_{eff}) for high current drivability under the same device area [3]. However, there is no quantitative analysis of NS structure combined with source/drain (S/D) junctions in the sub-10-nm node for accurate power-performance optimization.

In this work, 7-nm node NSFETs with different the number of NS (N_{NS}) and W_{NS} have been analyzed using calibrated TCAD. Optimal structure of NSFETs for minimal RC delay was proposed including middle-of-line area.

2. Simulation Method

All the devices were simulated using Sentaurus TCAD. Doping, stress, interface, and ballisticity were considered for the calculation of carrier mobility. Fig. 1 shows fine calibration to 10-nm node FinFETs [1]. Larger S/D doping concentration and junction gradient (L_j) for PFETs are obtained to satisfy the subthreshold swing (SS) and drain-induced barrier lowering (DIBL) indicated at the bottom right of Fig. 1.

Fig. 2 shows the process flow of 7-nm node NSFETs referred from [2]. $Si/Si_{0.7}Ge_{0.3}$ multi-layer epitaxy, $Si_{0.7}Ge_{0.3}$ selective etching for inner-spacer formation, Poly-Si gate and $Si_{0.7}Ge_{0.3}$ removals for HK/MG stack, and metal contacts for middle-of-line were executed successively. Geometrical parameters of 7-nm node NSFETs were indicated in Table I.

3. Results and Discussion

2-D cross sections of the three-stacked NSFETs were shown in Fig. 3. Double NSFETs ($W_{NS} = 16$ nm) were compared to single ones ($W_{NS} = 44$ nm) at the fixed device area

(FP×GP). On-currents (I_{on}) and gate capacitances (C_{gg}) of the NSFETs with different N_{NS} and W_{NS} were investigated for standard performance applications (off-current (I_{off}) = 0.1 nA) in Fig. 3. I_{on} and C_{gg} of 10-nm node FinFETs were also included for comparison. NFETs have larger I_{on} than do PFETs due to better SCEs by smaller L_j . Smaller L_j for NFETs also reduce parasitic capacitances (C_{para}) [4], having smaller increasing rate of C_{gg} with respect to N_{NS} than do PFETs. Wider W_{NS} is preferable to increase I_{on} by larger W_{eff} , but increases C_{gg} by intrinsic capacitances (C_{int}) and C_{para} . More N_{NS} increases W_{eff} , which increases C_{para} , C_{int} , and I_{on} , but the increasing rate of I_{on} with respect to N_{NS} becomes smaller.

This can be explained clearly in Fig. 4. Large amount of drain currents (I_{ds}) flow through the NS near the S/D contacts because the carrier path from source to drain contacts is short. The NSFETs have longer carrier paths for bottom-side NS, suffering from larger parasitic resistances (R_{sd}) of the S/D epi. This decreases contribution to the total I_{ds} of the NSFETs as the S/D epi height increases by more N_{NS} .

Fig. 5 shows the R_{sd} of the S/D epi and its extension as a function of N_{NS} . Total R_{sd} were extracted using Y-function [5], and contact resistances (R_{con}) of 50 Ω ·µm for each S/D were subtracted from total R_{sd} . NFETs have larger R_{sd} than do PFETs due to smaller S/D epi and its extension doping concentrations. Larger W_{eff} by more N_{NS} or by larger W_{NS} decreases the R_{sd} , but its decreasing rate with respect to N_{NS} becomes smaller because of the larger S/D epi.

Fig. 6 summarizes the RC delay of 7-nm node NSFETs and 10-nm node FinFETs for three different applications. Minimum RC delay values are obtained at the N_{NS} of 2 and 3 for P- and NFETs, respectively. 7-nm node NSFETs have potential to decrease RC delay than 10-nm node FinFETs, but worse SCEs by short L_{sp} of 5 nm under the same L_j decrease performance boosts for low-power applications. PFETs have larger decreasing rate of C_{gg} than increasing rate of I_{on} with respect to N_{NS}, so the N_{NS} of 2 attains minimum RC delay. On the other hand, NFETs have smaller C_{para} from smaller L_j , which the I_{on} increase for the N_{NS} of 3 is larger than the C_{gg} increase and minimizes the RC delay for all three applications.

4. Conclusions

DC/AC performances of 7-nm node NSFETs with different N_{NS} and W_{NS} were investigated. Analyzing R_{sd} and C_{para} with respect to N_{NS} and W_{NS} , 7-nm node NSFETs have minimum RC delay smaller than 10-nm node FinFETs at the N_{NS} of 2 and 3 for p- and n-type devices, respectively.

Acknowledgements

This work was supported by the Technology Innovation Program or Industrial Strategic Technology Development Program (10080617) funded by MOTIE, Korea and also by Basic Science Research Program through the NRF (2017R1C1B5017795) funded by the Ministry of Science, ICT & Future Planning, and in part by IC Design Education Center.

References

- [1] C. Auth et al., IEDM (2017) 673.
- [2] N. Loubet et al., VLSI (2017) 230.
- [3] S. Barraud et al., IEDM (2017) 677.
- [4] J.-S. Yoon et al., IEEE EDL 36 (2015) 994.
- [5] R.-H. Baek et al., IEEE T-NANO 9 (2010) 212.

Fig. 1 Calibration of 10-nm node p/n bulk FinFETs.

Fig. 2 Step-by-step simulated process flow of NSFETs.

|--|

Parameters	Symbols	Values
Fin pitch	FP	56 nm
Gate pitch	GP	44 nm
Gate length	L_{g}	12 nm
Spacer length	L_{sp}	5 nm
NS thickness	T _{NS}	5 nm
NS spacing	T _{SP}	10 nm
NS width	W _{NS}	16, 44 nm
The number of NS	N _{NS}	2, 3, 4, 5

Fig. 3 Structure (left), and I_{on} and C_{gg} (right) of 7-nm node NSFETs.

Fig. 4 I_{ds} density of NSFETs at on-state ($V_{gs} = V_{ds} = 0.7 \text{ V}$)

Fig. 6 RC delay of NSFETs with different N_{NS} and W_{NS}.