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Abstract 

In this study, we investigated electrical characteristics of 
CoFeB/MgO/CoFeB magnetic tunneling junction (MTJ) 
formed with different boron concentrations in CoFeB and 
different annealing temperatures. For boron concentration 
of 20 at.%, early failure probability increased at annealing 
temperature of 400 oC. For boron concentration of 30 at.%, 
higher breakdown voltage with lower early failure probabil-
ity were obtained at annealing temperature at 400 oC.  

 
1. Introduction 

Spin-transfer Torque Magnetoresistive Random Access 
Memory (STT-MRAM) has been actively researched by various 
groups for its high speed and non-volatility [1-3]. The stack of 
CoFeB/MgO/CoFeB is one of the most effective structures for 
obtaining a superior magnetoresistance (MR) ratio and high tem-
perature stability [4-5]. The result that the composition of boron 
in CoFeB electrode highly impacts on the MR ratio has been re-
ported in previous research [6]. However, the impacts of boron 
concentration and annealing temperature on the electrical char-
acteristics has not been clarified in detail. In this study, we in-
vestigated the electrical characteristics and the reliability of 
CoFeB/MgO/CoFeB structures with different boron concentra-
tions in CoFeB from 0 to 30 at.% with annealing temperature up 
to 400 ºC.  
2. Experimental Setup 

Figures 1 (a) and (b) show a schematic cross-sectional view 
of the MTJ structure and its fabrication process flow, respec-
tively. The fabricated MTJ is CoFeB/MgO/CoFeB formed on 
200 mm diameter Si wafer. Table 1 shows the details of the sam-
ple fabrications and the measurement condition. 14 types of sam-
ples have been used for this investigation. One of the major pa-
rameters was MgO fabrication methods; Radio Frequency sput-
tering (RF-MgO) and Mg Oxidation after sputtering (Mg Oxida-
tion). Another was the boron concentration in CoFeB (0, 20, and 
30 at.%). In addition, these samples were annealed at various 
temperature after the fabrication (w/o annealing, 300ºC – 1hr. 
and 400ºC – 1hr.). Figure 2(a-d) shows typical transmission elec-
tron microscope (TEM) images of fabricated samples. I-V meas-
urements were conducted for 57 devices across the whole wafer 
position for each sample type. The MTJ area was 1×1 µm2, and 
the MgO thickness was 2.0 nm. The measurement condition was 
increasing voltage from 0 to 4 V with the voltage steps of 0.01 
V. This measurement was conducted at room temperature. Cur-
rent at 1V, breakdown voltage and early failure probability were 
extracted and compared for discussion. 
3. Results and Discussions 

Figure 3(a-b) shows I-V characteristics of the fabricated 
samples having median characteristics for each fabrication con-
dition for (a) Mg Oxidation and (b) RF-MgO, respectively.  

Figure 4 shows wafer map of breakdown voltage for RF-
MgO samples with 20 at.% and 30 at % after 300 or 400 ºC an-
nealing.    

Figure 5 shows the current at 1V as a function of annealing 
temperature for (a) Mg Oxidation and (b) RF-MgO, respectively. 
Median, top 10%, and bottom 10% values from the 57 samples 

are shown in each plot. It should be noted that early failures were 
excluded from these figures. The samples without annealing pro-
cess were plotted at the annealing temperature of 180 ºC, which 
is the highest temperature during the fabrication process. In Fig. 
5(a) for Mg Oxidation samples, as annealing temperature in-
creases, the current value increased for boron concentration of 
20 at.%. This result is consistent with the previous research [7]. 
However, the current decreased for 30 at.%. The current values 
are smaller for 20 at.% than 30 at.%. In Fig.5(b) for RF-MgO 
samples, annealing temperature dependences are small for both 
boron concentrations of 20 and 30 at.%.  

Figure 6 shows the median breakdown voltage as a function 
of annealing temperatures with different boron concentrations. 
Breakdown voltage tends to increase as an increase of annealing 
temperature for boron concentrations of 20 and 30 at.%, while it 
slightly decreases without boron content. For RF-MgO samples, 
breakdown voltages are higher than Mg Oxidation samples, and 
almost the same characteristics were obtained for boron concen-
tration of 20 and 30 at.%.   

Figures 7 shows the early failure probability as a function of 
annealing temperature with different boron concentrations. 
Without boron content, early failure probability increases after 
annealing process. For the samples with boron concentration of 
20 at.%, early failure probability was very low without and with 
300ºC annealing, and it increased after 400ºC annealing. On the 
contrary for the samples with boron concentration of 30 at.%, 
early failure probability is high without annealing, and it de-
creased after 400ºC significantly.  

These results indicate that a relatively higher annealing tem-
perature is effective for higher boron concentration case, and the 
highest breakdown voltage with low early failure probability was 
obtained after 400ºC for RF-MgO samples in this experiment. 
4. Conclusions 

The electrical characteristics of CoFeB/MgO/CoFeB MTJ 
with different boron concentrations in CoFeB and annealing tem-
perature have been measured and analyzed. For boron concen-
tration of 20 at.%, annealing temperature up to 300ºC was found 
to be effective improve electrical characteristics but early failure 
characteristics degraded after 400ºC. For boron concentration of 
30 at.%, annealing temperature at 400ºC was found to be effec-
tive to improve breakdown voltage and suppression of early fail-
ure. These findings are to be important for the development of 
high quality MTJ with different boron concentration in CoFeB.  
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Fig. 1 (a) Cross sectional view of CoFeB/MgO/CoFeB sample  

and (b) its process flow. 
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Table 1 Sample characteristics and  

measurement condition. 

 

 

 

 

 

 

 

 

 

 

Film Fabrication MgO Sputtering
Mg Oxidation

after sputtering

Film Thickness 2.0 nm

B concentration

In CoFeB Layer

20, 30 at% (for all annealing conditions)

0 at% (for only RF-MgO w/o annealing 

and with 300ºC – 1Hr. annealing)

Annealing condition w/o annealing, 300ºC-1Hr, 400ºC-1Hr

Film area 1x1 μm2

No. of chips/wafer 57

Measurement

condition

I-V Measurement

(From 0 to 4 V, 0.01V Steps)

Temperature 25 ºC

  
Fig. 6 Breakdown voltage as a function of annealing  

temperature. 
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Fig. 7 Early failure rate as a function of annealing  

temperature. 
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Fig. 2 TEM images of CoFeB/MgO/CoFeB structures on the respective conditions. 
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Fig. 3 I-V characteristics of the (a) Mg Oxidation and (b) RF-MgO samples. 
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Fig. 4 Breakdown voltage distributions on 

each wafer of RF-MgO samples. In details, (a) 

B=20 at.%, 300 °C Annealing, (b) B=20 at.%, 

400 °C Annealing, (c) B=30 at.%, 300 °C An-

nealing, and (d) B=30 at.%, 400 °C Anneal-

ing. 
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(a)                             (b) 

Fig. 5 Current at 1V as a function of the annealing temperature;  

(a) Mg Oxidation, (b) RF-MgO samples. 
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