Analysis of Deep Traps at Al₂O₃/n-GaN Interface using Photo-assisted C-V Measurement

Kazuya Yuge^{1, 2}, Toshihide Nabatame², Yoshihiro Irokawa², Akihiko Ohi², Naoki Ikeda², Akira Uedono³, Liwen Sang², Yasuo Koide², and Tomoji Ohishi¹

 ¹ Shibaura Institute of Technology 3-7-5, Toyosu, Koto-ku, Tokyo 135-8548, Japan Phone: +81-29-851-3354 E-mail: YUGE.Kazuya@nims.go.jp
² National Institute for Materials Science
1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
³ University of Tsukuba
1-1-1, Tennodai, Tsukuba, Ibaraki 305-0044, Japan

Abstract

We discussed the deep traps at Al₂O₃/n-GaN interface from V_{fb} shift after photo-irradiation (hv = 3.3 eV) in depletion. The V_{fb} of all Pt/Al₂O₃/n-GaN capacitors shifted toward negative direction after photo-irradiation. The negative V_{fb} shift is dominantly due to the deep traps excited by photo and the estimated densities of the deep traps were $1.5 \sim 0.67 \times 10^{12} \text{ cm}^{-2}$ at PDA 600 ~ 900 °C.

1. Introduction

GaN-based vertical MOSFETs on free-standing GaN substrates have been widely investigated for next-generation GaN power devices [1]. To reduce the leakage current, MOS structures with Al₂O₃ and SiO₂ insulators were employed. To understand characteristics of insulator/GaN interface, the flatband voltage (V_{fb}) shift, V_{fb} hysteresis and frequency dispersion were examined using capacitance-voltage (*C-V*) measurements. Many reports pointed out the evaluation of interface state density (D_{it}) in the energy levels close to the conduction band edge (E_C) using the conductance and the Terman methods [2, 3]. To evaluate D_{it} in the energy levels near midgap for Al₂O₃/AlGaN/GaN power device, photo-assisted *C-V* measurement was employed [4]. However, the deep traps in the deep energy levels near the valence band edge (E_V = 3.4 eV) of Al₂O₃/n-GaN has not been extensively studied.

In this study, we examine V_{fb} change of Pt/Al₂O₃/n-GaN MOS capacitors using photo-assisted *C-V* measurement and discuss the deep traps at Al₂O₃/n-GaN interface.

2. Experimental

Pt/Al₂O₃/n-GaN MOS capacitors were fabricated as follows. A 5-µm-thick Si-doped GaN epilayer $(2 \times 10^{16} \text{ cm}^{-3})$ on freestanding n⁺-GaN(0001) $(1.3 \times 10^{18} \text{ cm}^{-3})$ was used as substrate. After cleaning the surface of the substrate in the solution of a sulfuric acid peroxide mixture (H₂O₂:H₂SO₄ = 1:1) for 5 min, a 25-nm-thick Al₂O₃ film was deposited by ALD at 300 °C using a TMA precursor and H₂O gas. Post-deposition annealing (PDA) was performed at 600 - 900 °C in N₂ atmosphere. Finally, 100-nm-thick Pt gate electrodes were deposited on the Al₂O₃ film through a shadow mask and Pt(100 nm)/Ti(20 nm) ohmic contacts were deposited on the backside of n⁺-GaN substrate.

Fig. 1 shows schematic illustrations of band diagram for

Al₂O₃/n-GaN gate stack during (a) typical *C*-*V* measurement in darkness and (b) photo-assisted *C*-*V* measurement. A semiconductor laser (hv = 3.3 eV) was used as the light source. In **Fig. 1 (a)**, the gate bias was swept from accumulation (V_{fb}+3 V) to depletion (V_{fb}-3 V) (Initial) and kept for 60 s in darkness to examine shallow traps in the energy levels near E_C. Next, we restarted the *C*-*V* sweeping toward accumulation (V_{fb}+3V) (Darkness). On the other hand, in **Fig. 1 (b)**, after sweeping from accumulation to depletion, light was irradiated on the capacitor for 60 s to examine the deep traps which was excited by photo-irradiation in wider energy levels (E_C ~ E_V). After switching off the light, we restarted the *C*-*V* sweeping toward accumulation in darkness (hv).

Fig. 1 Schematic illustrations of band diagram for Al_2O_3/n -GaN gate stack during (a) typical *C-V* measurement in darkness and (b) photo-assisted *C-V* measurement.

3. Results and Discussion

Fig. 2 shows *C-V* characteristics of Pt/Al₂O₃/n-GaN MOS capacitors. As-grown capacitor shows a very similar *C-V* behavior of the 600 °C capacitor. The *C-V* curves shifted in the positive direction as PDA temperature increased from 600 to 900 °C. **Fig. 3** shows *C-V* characteristics of the 700 °C capacitor under darkness and photo-irradiation conditions. The *C-V* curve of Darkness slightly shifted toward negative direction (-90 mV) (**Fig. 3 (a)**). The *C-V* shift is dominantly due to the shallow traps of short time constant near E_C. On the other hand, a large negative *C-V* shift (-640 mV) appeared after photo-irradiation (**Fig. 3 (b)**). Here, the deep traps of long time constant must be excited from the interface state in the wider energy levels by the photo-irradiation with the higher energy like the band diagram in **Fig. 1 (b)**.

Fig. 2 *C-V* characteristics of Pt/Al₂O₃/n-GaN MOS capacitors. *C-V* curves shifted toward positive direction as PDA temperature increases from $600 \sim 900$ °C.

Fig. 3 *C-V* characteristics of the 700 °C capacitor under (a) darkness and (b) photo-irradiation conditions. A small negative shift of *C-V* curve of Darkness was observed because of shallow traps near Ec. A large negative shift of *C-V* curve of *hv* occurred due to deep traps in wider energy ($E_C \sim E_V$).

Fig. 4 shows V_{fb} changes of the Initial, Darkness and hv as a function of PDA temperature. V_{fb} of Initial (V_{fb Initial}) shifted toward ideal V_{fb} as PDA temperature increases, indicating that characteristics at Al₂O₃/n-GaN interface was significantly improved. The effect of PDA treatment on electrical properties of the Al₂O₃/n-GaN MOS capacitors were reported [2, 5]. The difference between the V_{fb} of Darkness (V_{fb Darkness}) and the V_{fb Initial} decreases from 0.1 V to 0.01 V as PDA temperature increases from 600 to over 700 °C. This suggests that the number of shallow traps near E_C becomes small because of improvement of Al₂O₃/n-GaN interface.

Fig. 4 V_{fb} changes of Pt/Al₂O₃/n-GaN MOS capacitors under several measurements (Initial, Darkness, and hv). The V_{fb} of hv shifted significantly toward negative direction compared to those of V_{fb} of Darkness in all capacitors.

Note that V_{fb} of hv ($V_{fb hv}$) shifted significantly toward negative direction compared to those of $V_{fb Darkness}$ in all capacitors.

Fig. 5 (a) shows the difference between the $V_{fb\ hv}$ and $V_{fb\ Darkness}$ as a function of PDA temperature. As-grown capacitor exhibited a large negative V_{fb} shift with -1.7 V. The negative V_{fb} shift decreases gradually with increasing PDA temperature. The negative V_{fb} shift is thought to be dominantly due to the deep traps in the deep energy levels near E_V because there are several interface states around E_V [6]. Here, we estimated density of deep traps according to equation (1),

$$D_{dt} = \frac{C_{ox}(V_{fb hv} - V_{fb Darkness})}{q}, \qquad (1)$$

which D_{dt} is density of deep traps, C_{ox} is oxide capacitance, and q is elementary charge, respectively. As shown in **Fig. 5** (b), as-grown capacitor shows a large D_{dt} of 3.1×10^{12} cm⁻², suggesting that the initial Al_2O_3 growth resulted in the formation of electrical defects on the surface of the n-GaN. Although the D_{dt} decreases as PDA temperature increases, a large density of 0.67×10^{12} cm⁻² remains even after PDA 900 °C. We believe that the large number of deep traps in deep energy level must be related to device characteristics of mobility and threshold voltage.

Fig. 5 (a) The difference between the V_{fb hv} and V_{fb Darkness} and (b) estimated density of deep traps as a function of PDA temperature. V_{fb hv} - V_{fb Darkness} decreases gradually with increasing PDA temperature. The estimated the density of deep traps were $1.5 \sim 0.67 \times 10^{12}$ cm⁻² at PDA 600 ~ 900 °C.

3. Conclusions

We studied V_{fb} shift due to the deep traps at Al₂O₃/n-GaN interface for Pt/Al₂O₃/n-GaN capacitors using photo-assisted *C-V* measurement. Negative V_{fb} shift was observed in all capacitors after photo-irradiation compared to those of typical *C-V* measurement in darkness. The negative V_{fb} shift due to the deep traps exhibited -0.32 V and the D_{dt} was estimated 0.67 × 10¹² cm⁻² at PDA 900 °C.

Acknowledgements

This work was supported by the MEXT GaN R&D Project.

References

- [1] T. Oka et al., Appl. Phys. Express 8 (2015) 054101.
- [2] T. Marron et al., Phys. Status Solidi C 9 (2012) 907.
- [3] N. Taoka et al., Jpn. J. Appl. Phys. 57 (2018) 01AD04.
- [4] C. Mizue et al., Jpn. J. Appl. Phys. 50 (2011) 021001.
- [5] H. -S. Kang et al., J. Phys. D 46 (2013) 155101.
- [6] T. Tanaka et al., Thin Solid Films 557 (2014) 207.