
A Dependence of the Skyrmion Hall Effect on the Gilbert Damping Constant

Yuichi Ishida and Kenji Kondo

Laboratory of Nanostructure Physics, Research Institute for Electronic Science,
Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
phone: +81-11-706-9424 E-mail: kkondo@es.hokudai.ac.jp

Abstract
We study the skyrmion Hall effect in the heterostructures

of heavy metal/ultrathin ferromagnet/insulator multilay-
ers by micromagnetic simulation. Under a small Gilbert
damping constant, it is found that there exists a meaningful
difference between the result of Hall angle using micromag-
netic simulation and that of the Thiele equation. Therefore,
we conclude that the Thiele equation is not valid when the
Gilbert damping constant is small.

1. Introduction
Magnetic skyrmions are chiral spin structures with particle-

like nature. They are relatively stable against perturbations,
which originates from their topologically protected field con-
figurations. Therefore, it is difficult to destroy their structures
and deform them to other magnetic structures. Recently, mag-
netic skyrmions have been paid much attention due to potential
ability for high-density memories and logic devices in the field
of spintronics. This is because magnetic skyrmions are stable
and can be driven by a very low current density in comparison
with the critical current density for domain wall motion.

In heterostructures of heavy metal/ultrathin ferromag-
net/insulator multilayers, magnetic skyrmions can be moved
by the spin orbit torque from the spin Hall effect of the heavy
metal layer. In this situation, magnetic skyrmions move along
the perpendicular direction to the current flow. This effect is
called as the skyrmion Hall effect [1]. In this letter, we study
the skyrmion Hall effect using micromagnetic simulation. As
a result, we show its dependence on the Gilbert damping con-
stant and show that the Thiele equation is invalid for the system
in the case of � � 1.

2. Theory
The dynamics of the magnetization under any spin torque

is governed by the modified Landau-Lifshitz-Gilbert (LLG)
equation [2, 3]:
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where M is the magnetization vector, �s is the saturation
magnetization, � is the gyromagnetic ratio, �0 is the vacuum
permeability, � is the Gilbert damping constant, Heff is the
effective magnetic field, and τ is any torque working on the
magnetization. The effective magnetic field represents all the
effects working on magnetic moments and is written in terms

of functional derivative as follows:
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where � is the total energy of all the effects working on mag-
netic moments. In this study, the total energy consists of
the exchange energy, uniaxial anisotropic energy, interfacial
Dzyaloshinskii-Moriya interaction (DMI) energy, and the de-
magnetization energy. For the demagnetization energy, we
assume that the demagnetization field Hd is determined by
Hd � −�s�z �̂. Moreover, we utilize the spin orbit torque
from the spin Hall effect to move the magnetic skyrmion,
which is given as follows [4]:
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where � is the Dirac constant, � is the electron charge, m is
the unit magnetization vector, �sh is the spin Hall angle of the
heavy metal, � f is the thickness of the ferromagnet layer, and
j is the current density.

Steady state motion of magnetic structures is represented
by the Thiele equation [5] which is obtained from the LLG
equation (1) and is written for a magnetic skyrmion under the
influence of the spin Hall torque as follows [1]:
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where G � (0� 0�−4��) is the gyromagnetic coupling vector,
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the magnetic skyrmion, v is the magnetic skyrmion velocity,
D � ( D 0

0 D ) is the dissipative force tensor, B � ( B 0
0 B ) shows

the efficiency of the spin Hall torque, and the components of
these tensor D and B are determined by the configuration
of the magnetic skyrmion. When the current density is spa-
tially homogeneous and has only 	-component j � ( 
x� 0), the
magnetic skyrmion velocity is given by
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Therefore, the ratio of in-plane velocity components is given
by
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3. Results and discussion
In order to solve the LLG equation numerically, we use

the parameters �s � 600 kA/m, the exchange stiffness � �

30 pJ/m, the DMI constant � � 4 mJ/m2, and the anisotropy
constant  � 0�8 MJ/m3, � f � 1 nm, �sh � −0�1. For the
initial state of the LLG simulation, we set a magnetic skyrmion
which is obtained by the variational principle [6]. Then, we
apply the current density 
x � 1 TA/m2 and the magnetic field
�z � 1 mT. As shown in Fig.1, a magnetic skyrmion moves
to the y direction which is perpendicular to the direction of the
current.

Fig. 1 The skyrmion Hall effect in the case of � � 0�3. The blue
dotted line is a guide for eyes.

From the numerical results, we calculate the ratio of com-
ponents of in-plane average velocity and compare it with the
analytical value which can be obtained from the eq. (6) as
shown in Fig.2. In order to obtain the analytical value, we
need to calculate D. Wherein, we have used the magnetiza-
tion distribution of the skyrmion obtained by the variational
principle. As shown in Fig. 2, it is found that there exists large
difference between the result of the micromagnetic simulation
and that of the Thiele equation under the condition of � � 1.

Fig. 2 The dependence of the ratio of in-plane velocity components on
the damping constant �. The blue solid circles and the orange solid
line represent the numerical results and analytical value obtained from
eq. (6), respectively.

It can be considered that the distortion of the structure of
the magnetic skyrmion becomes larger with decreasing the
value of � since the direction of the magnetization inclines
more slowly to the direction of the effective magnetic field
with decreasing the value of � as shown in Fig. 3. Namely, the
systems under very small � do not satisfy the assumption of
the Thiele equation that the motion of magnetization structure
is only translation and its configuration does not change.

Fig. 3 The illustration of the magnetization damping. Here, the red
and blue solid arrows are the magnetization unit vector m and the
effective magnetic field unit vector heff, respectively. The green and
the orange solid curves represent the trajectories of the magnetization
for the large and small �, respectively.
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