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Abstract 

 Based on the thermionic emission (TE) theory, the so-called Seto’s 

model explains that the grain-boundary(GB)-limited carrier mobility 

in polycrystalline-silicon (poly-Si) is dependent positively on a 

temperature.  Although this model is widely accepted as a standard 

model of the GB-limited mobility in poly-Si, many experiments 

support extremely-weak or negative temperature dependence.  In 

this report, we have formulated carrier conduction through GB traps 

by utilizing the so-called trap-assisted tunneling (TAT) model based 

on the non-radiative multi-phonon transition theory.  Self-consistent 

calculation has revealed that in contrast to the Seto’s model, our novel 

model can reproduce the GB-limited mobility dependent negatively 

on a temperature.  From the viewpoint of consistency with 

experiments, our novel model seems more appropriate than the Seto’s 

model. 
 

1.  Introduction 

 The Seto’s model [1], which is based on the TE theory, has been widely 

accepted as a standard model of the GB-limited carrier mobility in poly-Si 

[2, 3].  It has been already known that because a GB barrier is not very 

high in poly-Si films, the quantum-mechanical tunneling through the GB 

barrier is not significant compared with TE [4, 5].  The most essential 

consequence of the Seto’s model is that the GB-limited mobility is 

temperature-activated and dependent positively on a temperature.  

Therefore, when the measured mobility shows extremely-weak or negative 

temperature dependence, we do not usually consider the mobility limited 

by GBs but that controlled by in-grain or MOS-interface defects instead [3].  

We note that a low GB barrier energy less than the thermal energy (kT), 

which can reproduce the GB-limited mobility dependent negatively on a 

temperature [1], tends to overestimate a value of that mobility (see Sec. 3). 

 The circumstances explained above seem to suggest that the GB-limited 

mobility proportional to a grain size cannot be interpreted consistently with 

negative temperature dependence.  This inconsistency will be, however, 

dissolved if we have developed a novel GB-limited mobility model that 

can reproduce negative temperature dependence.  In this report, we 

formulate carrier conduction through GB traps by utilizing the TAT model 

[6 - 11], and then reveal that our model reproduces extremely-weak 

temperature dependence of the GB-limited mobility. 
 

2.  Grain-Boundary Modeling Based on Trap-Assisted Tunneling 

 In this section, carrier conduction through GB traps is formulated by 

utilizing the TAT model.  In general, each localized electronic state is 

stabilized by the self-trapping mechanism, namely by local polarization 

due to lattice displacement [12].  Supposing the lattice displacement, the 

TAT model considers non-radiative multi-phonon transition [12].  

Examples to which the TAT model has been applied extend over various 

kinds of simulation including SILC [6, 7] and RTN [8 - 10] as well as 

MONOS [11]. 

 According to Refs. [1, 2], trapped charges on a GB have been expected 

to induce a parabolic potential barrier.  Therefore, we can expect that the 

TAT model for GB traps is derived by replacing a trapezoidal potential 

barrier usually assumed in the TAT model for SILC [6, 7] with a parabolic 

one (see Fig. 1).  A potential barrier induced by trapped charges on a GB 

(Qt [1/cm2]) is schematically shown in Fig. 2.  Figure 2 also shows 

equations for lengths and heights of the potential barrier, as well as an 

equation for an applied bias (Va [V]) between anode and cathode sides of 

the potential barrier.  All equations shown in Fig. 2 have been derived by 

using the literatures [1, 2] as reference.  We note that a grain size of poly- 

Si is assumed to be larger than a sum of barrier lengths for both cathode 

and anode sides, namely Qt / N where N [1/cm3] is a volume concentration 

of free carriers (see Sec. 3).  In Fig. 3, energies of trapped carriers on a 

GB and of de-trapped carriers are shown on a parabolic energy profile of 

the conduction band edge for a cathode or anode side (EC(x) [eV]).  An 

energy difference between de-trapped and trapped carriers is attributed to 

the multi-phonon emission or absorption (pℏ [eV]) during carrier- 

trapping.  p is a number of phonons emitted during carrier-trapping 

(negative p indicates phonon absorption).  ℏ [eV] is a single phonon 

energy typical for displaced lattice-vibration-modes. 

 We have formulated TAT rates for capture and emission of carriers, 

based on following two concepts: A short-range interaction [9] for the 

transition matrix element of carriers, originally proposed by Lundstrom 

and Svensson [13]; simplified statistics [7, 8, 10] for energies of tunneling 

carriers, originally introduced by Herrmann and Schenk [6].  Assuming 

large grains, those rates have been expressed as 
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where “y” is “c” (cathode) or “a” (anode) and c,y
-1 and e,y

-1 [1/s] are 

capture and emission rates of carriers by GB traps, respectively.  rt is a 

localization length of GB traps, mdos is the density-of-states effective-mass 

for a poly-Si grain, fFD() is the Fermi-Dirac distribution function, and EF is 

the Fermi level of carriers in a grain whose concentration is N.  PMP() is 

the multi-phonon transition probability under the Condon approximation 

(see Eq. (6.66) of Ref. [12]), S is the Huang-Rhys factor (see Sec. 6.1 of 

Ref. [12]), and mtun is the tunneling mass of carriers in a grain.  See Fig. 3 

for parameters such as t, x1, and x2. 

 According to Eqs. (6 - 9) of Ref. [5], the tunneling probability of carriers 

across a parabolic GB barrier, denoted by TWKB() in Eqs. (1), has been 

expressed as 

 

(2) 

 

Using Eqs. (8) and (15) of the literature [7] as reference, a carrier 

occupancy of GB traps (ft) and a TAT current density through GB traps 

(JTAT [C/cm2/s]) have been expressed at a steady-state as 

 

(3) 

 

where Nt [1/cm2] is a surface concentration of GB traps. 
 

3.  Self-consistent Calculation and Results 

 Using equations shown in Figs. 2 and 3, EC(x) for both cathode and 

anode sides can be derived from Qt.  On the other hand, Qt (= ft Nt) can be 

calculated from EC(x) for the both sides, according to Eqs. (1), (2), and (3).  

In order to self-consistently carry out those derivation and calculation, we 

have developed the EXCEL program based on a scheme shown in Fig. 4. 

 We then tried to confirm that the above program reproduces 

experimental temperature dependence of the electron mobility in poly-Si 

shown in Ref. [3].  Parameters used in self-consistent calculation are 

summarized in Table I.  Reference [3] has reported that a median size of 

poly-Si grains is approximately 0.8 m.  We note that according to 

preceding calculation for the 0.8 m grain size, a low GB potential barrier 
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less than kT/q yields the unphysical GB-limited mobility larger than 2000 

[cm2/V/s].  Figure 5 shows calculation results of temperature dependence 

of the electron mobility for total currents including both TAT and TE.  

Calculation results for a TE current only are also shown in Fig. 5 as 

reference.  In contrast to strong positive temperature dependence of TE, 

the total electron mobility dominated by TAT shows extremely-weak 

negative temperature dependence, which has been attributed to the inverted 

region effect of the so-called Marcus theory [14].  In Fig. 5, N is supposed 

to be 2 x 1018 [1/cm3].  If an induced channel thickness [2] is assumed to 

be 5 nm, the corresponding surface concentration (Ns [1/cm2]) is estimated 

to be 1 x 1012 [1/cm2].  One can see that extremely-weak temperature 

dependence of the experimental electron mobility about 50 [cm2/V/s], 

which has been shown for Ns = 1 x 1012 [1/cm2] in Ref. [3], is comparable 

with our calculation results shown for N = 2 x 1018 [1/cm3] in Fig. 5.  We 

note that the 0.8 m grain size is larger than the maximum Qt / N, namely 

30 nm. 
 

4.  Conclusions 

 Utilizing the TAT model based on the non-radiative multi-phonon 

transition theory, we have formulated carrier conduction through GB traps.  

Self-consistent calculation has revealed that in contrast to the conventional 

Seto’s model based on the TE theory, our novel model can reproduce the 

GB-limited mobility dependent negatively on a temperature.  From the 

viewpoint of consistency with experiments, our novel model seems more 

appropriate than the Seto’s model. 
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Fig. 1.  A trapezoidal potential barrier is usually assumed in the TAT 

model for SILC [6, 7], as schematically shown in the left side.  On the 

other hand, a parabolic potential barrier is expected for TAT carrier 

conduction through GB traps, as shown in the right side. 
 

Barrier length:

Qc / N, Qa / N.

Potential barrier height:

q Qc
2 / (2  N), q Qa

2 / (2  N).

Applied bias between cathode and anode sides:

Va = q (Qa
2 – Qc

2) / (2  N).

[ D =  N Va / (q Qt) ]

Qt/2 – D
= Qc.

－
－－
－

－
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Fig. 2.  Energy-band-bending due to trapped charges on a GB (Qt 

[1/cm2]) is schematically shown in the upper figure.  Below that figure, 

we also list equations concerning barriers of both cathode and anode sides.  

Qc and Qa [1/cm2] are surface concentrations of GB-trapped-charges that 

should be assigned to cathode and anode sides, respectively.  q [C] and  
[C/V/cm] are the elementary electronic charge and the permittivity in poly- 

Si, respectively.  A difference between Qa and Qc, namely 2D [1/cm2], is 

related to Va. 
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Fig. 3.  The upper figure shows Ec() for a cathode or anode side as a 

parabolic function of x.  x1 [cm] is a position of a classical turning point 

for de-trapped carriers.  x2 [cm] is a position of a GB, and also a barrier 

length.  t [eV] is the trap depth.  See Fig. 2 for Qy = Qc or Qa.  x1 is 

related to x2 and pℏ. 
 

0. An initial guess is assigned for Qt.

1. Using equations shown in Figs. 2 and 3, Ec(x) is derived for both 

cathode and anode sides from given Qt, N, and Va.

2. According to Eqs. (1) and (2), τc,c
-1, τe,c

-1, τc,a
-1, and τe,a

-1 are 

calculated from given Ec(x) for the both sides.

3. According to Eqs. (3), ft and Qt (= ft Nt) are calculated from 

given τc,c
-1, τe,c

-1, τc,a
-1, and τe,a

-1.

4. If Qt is converged, calculation is terminated.  Otherwise, a 

process of calculation returns to 1.  
Fig. 4.  A scheme is shown for self-consistent calculation of TAT through 

GB traps. 
 

Trap-Type 1: ℏ = 0.02 eV, Φt = 0.315 eV, S = 1, Nt = 2 x 1012 cm-2.

Trap-Type 2: ℏ = 0.02 eV, Φt = 0.400 eV, S = 2, Nt = 2 x 1012 cm-2.

Trap-Type 3: Φt ~ 0.5 eV, Nfixed-charges = 2 x 1012 cm-2.

 = 11.7 x 0 C/V/cm, mdos = 62/3 x 0.33 m0, mtun = 0.08 m0.  
Table I.  Parameters used in self-consistent calculation are listed.  We 

have assumed three types of GB traps including deep levels, namely 

“Trap-Type 3”.  Preceding calculation has ensured that “Trap-Type 3” 

behaves like fixed charges. 
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Fig. 5.  “TAT+TE” and “TE” indicate the GB-limited electron mobility 

for total currents and that for a TE current only, respectively.  Vb [V], 

namely a GB potential barrier height measured at a cathode side, is about 

10 times larger than kT/q. 
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