Significant Improvement in Electrical Characteristics of FinFETs by Trilayer High-k Gate Dielectric

Shang-Hua Hsu, Kuei- Shu Chang-Liao*, Yan-Lin Li, Chin-Hsiu Huang, Dun-Bao Ruan, Shang-Fu Tsai, Meng-Yang Chen

Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C.

*Tel: +886-3-5742674, E-mail: lkschang@ess.nthu.edu.tw

Abstract

Although the stacked high-k gate dielectric was proposed to reduce EOT in MOSFETs, its applications on FinFETs are rarely seen. A higher drive current, a higher on/off current ratio, a smaller S.S. value, a lower gate leakage current, a higher peak electron mobility, and better reliability characteristics of FinFETs are simultaneously achieved by a Zr-rich trilayer gate dielectric. The improvement can be attributed to fewer oxide traps in gate dielectric.

1 Introduction

With evolution of Moore's law, high-K/metal gate (HK/MG) and FinFET technologies have become mainstreams for ultimately scaled CMOS devices at and beyond the 16 nm technology node [1]. However, gate oxide scaling has been leaded towards a limitation for Hf-based HK dielectrics [2]. Many approaches have been proposed to further follow the device scaling trend, like new HK material [3], gate all around (GAA) structure [4]. ZrO₂ has a similar bandgap and band-offset [5] and even higher dielectric constant [6] as compared to HfO₂. However, ZrO₂ with relatively insufficient thermal stability may lead to chemical reactions with channel region, which may induce a large amount of interface defects [7]. Besides, the interface between metal gate and high-k dielectric is also very important to device characteristics, because oxygen vacancy generation in high-k dielectrics may induce threshold voltage shifts and some reliability problems [8]. Therefore, a novel trilayer HK dielectric gate stack is proposed for FinFET in this work. Electrical characteristics and reliability of FinFETs with control (HfO₂), bilayer (ZrO₂/HfO₂), Hf-rich and Zr-rich trilayer (HfO₂/ZrO₂/HfO₂) gate stacks are investigated and compared.

2 Experiments

FinFETs were fabricated on 6-inch p-type SOI (100) wafers. The patterns of dummy fins were defined by I-line lithography. Reactive ion etching (RIE) process was performed to form four parallel fins with a fin height of 30 nm. Then, a trimming was performed on the fins with H₂ plasma for 300 s. Afterwards, the SiO₂ IL was formed in H₂O₂ solution at 75 °C for 10 min. Then, a 3 nm thick HfO₂ (control), a 1.5 nm/1.5 nm thick ZrO_2/HfO_2 (bilayer), a 1.0 nm/1.0 nm/1.0 nm thick HfO₂/ZrO₂/HfO₂ (Hf-rich trilayer) and a 0.5 nm/2.0 nm/0.5 nm thick HfO₂/ZrO₂/HfO₂ (Zr-rich trilayer) were

deposited by an atomic layer deposition (ALD). Afterward, a 100-nm thick TiN film was deposited by sputtering to serve as metal gate. After patterning gate stack, phosphorous implantation (at 40 keV for a dose of 5×10^{15} cm⁻²) and activation (750 °C for 30 s) were performed on all samples. Passivation and metallization processes were performed, followed by a sintering at 400 °C for 30 min to complete the device fabrication. The sample splits are shown in Table 1.

3 Results and Discussion

Fig. 1 shows transmission electron microscopy (TEM) images of FinFET structure. The height and width of fin channel are about 30 nm and 13 nm, respectively. The thickness of gate dielectric is \sim 3.0 nm for all samples, which can also be seen from the TEM image.

Table. 1: Sample splits of FinFETs in this work

Sample	Control	Bilayer	Hf-Rich Trilayer	Zr-Rich Trilayer
Sinter	400 °C 30 min			
Contact	Al-Si-Cu 200nm			
Activation	RTA 750°C 30s			
Metal gate	TiN 100nm			
High-k	HfO₂ 30Å	HfO₂+ZrO₂ 15Å 15Å	HfO ₂ +ZrO ₂ +HfO ₂ 10Å 10Å 10Å	HfO ₂ +ZrO ₂ +HfO ₂ 5Å 20Å 5Å
Trimming	300s H ₂			
Channel material	Single Crystal-Si			
Substrate	SOI			

Fig.1: TEM images of FinFETs with (a) control, (b) bilayer, (c) Hf-rich trilayer and (d) Zr-rich trilayer gate stacks in this work.

Fig. 2 shows (a) drain current versus gate voltage (I_d-V_g) and (b) drain current versus drain voltage (I_d-V_d) of FinFETs with control, bilayer, Hf-rich trilayer and Zr-rich trilayer gate stacks, respectively. The on/off current ratio of FinFET is improved to 2.2×10^8 by using Zr-rich trilayer gate stack. The sub-threshold swing (S.S.) values of samples with Zr-rich trilayer, Hf-rich trilayer, bilayer, and control one are 69, 71, 70, and 72 mV/dec, respectively. The S.S. value of sample with Zr-rich trilayer gate dielectric is relatively smaller, probably due to fewer oxide traps in gate dielectric. The drive current of sample with Zr-rich trilayer gate dielectric is increased about 200% as compared to that of control one, as shown in Fig.2 (b). Results indicate that sample with Zr-rich trilayer gate stack shows better gate control ability and lower interface traps.

Fig. 2 (a) I_d - V_g curves and 2 (b) I_d - V_d curves for FinFETs with control, bilayer, Hf-rich trilayer and Zr-rich trilayer gate stacks.

Fig. 3 shows (a) gate leakage current versus gate voltage (J_g-V_g) curves and (b) electron mobility (μ_{eff}) versus inversion charge density (N_{inv}) for FinFETs with control, bilayer, Hf-rich trilayer and Zr-rich trilayer gate stacks. The gate leakage current of device with Zr-rich trilayer gate stack is much lower than those with the others. The peak electron mobility values of samples with Zr-rich trilayer, Hf-rich rilayer, bilayer, and control gate dielectrics are 345, 270, 340, and 274 cm²/Vs, respectively. A 22% enhancement of peak electron mobility can be achieved by using a Zr-rich trilayer, which may be due to fewer oxide traps in gate dielectric obtained from a higher content of ZrO₂.

Fig. 3 (a) J_g - V_g curves and (b) electron mobility (μ_{eff}) versus N_{inv} for FinFETs with control, bilayer, Hf-rich trilayer and Zr-rich trilayer gate stacks.

Fig. 4 shows (a) threshold voltage shift $(V_{th-shift})$ and (b) degradation of maximum trans-conductance $(G_{m,max})$ versus stress time at a constant voltage stress (E=9 MV/cm) for FinFETs with control, bilayer, Hf-rich

trilayer and Zr-rich trilayer gate stacks. The stress-induced $V_{th-shift}$ value of sample with Zr-rich trilayer gate dielectric is much smaller than that of control one. Results indicate that a ZrO₂ dielectric in trilayer high-k dielectrics can suppress oxygen vacancy generation in gate stack. In addition, sample with trilayer high-k dielectric gate stack show lower threshold voltage shifts, suggesting that the interface quality between gate electrode and high-k dielectric can be clearly improved by the proposed trilayer high-k dielectric stack. The stress-induced degradation of G_{m,max} for all samples is similar, indicating that the inter-diffusion between ZrO₂ layer and channel region can be suppressed by inserting a HfO₂ layer.

Fig. 4 (a) $V_{th-shift}$ and (b) G_{m-max} degradation versus F-N stress time of FinFETs with control, bilayer, Hf-rich trilayer, and Zr-rich trilayer gate stacks.

4 Conclusions

FinFETs with HfO₂, ZrO₂/HfO₂ bilayer, Hf-rich trilayer and Zr-rich trilayer gate stacks are investigated and compared in this work. A higher drive current, on/off current ratio, peak electron mobility, a lower S.S. value, gate leakage current, and better reliability characteristics of FinFETs are achieved by using Zr-rich trilayer gate stack. Therefore, a Zr-rich trilayer dielectric gate stack is promising to achieve high performance HK/MG FinFETs.

Acknowledgment

This work was supported in part by the Ministry of Science & Technology, Taiwan, under contract MOST-107- 2633-E-009 -003.

References

- [1] Chenming Hu et al., IEEE Trans. Electron Devices. 47 (2000), pp.2320-2325.
- [2] Chen-Chien Li, Kuei-Shu Chang-Liao et al., IEEE Electron Device Lett. 37 (2016), pp. 12-15.
- [3] D. H. Triyoso et al., IEEE Electron Device Lett. 29 (2008), pp. 57–59.
- [4] N. Singh et al., IEEE Electron Device Lett. 27 (2006), pp. 383–386.
- [5] V. V. Afanas'ev et al., Appl. Phys. Lett. 99 (2011), pp. 172101-1–172101-3.
- [6] D. Fischer and A. Kersch, Appl. Phys. Lett. 92 (2008), pp. 012908-1–012908-3.
- [7] M. Gutowski et al., Appl. Phys. Lett. 80 (2002), pp. 1897–1899.
- [8] K. Shiraishi et al., International Conference on Solid-State and Integrated-Circuit Technology, (2008), pp. 1256–1259.