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Abstract 

We have studied the band alignment of ZnO/β-Ga2O3 

heterojunction fabricated by atomic layer deposition at 

150oC using X-ray photoelectron spectroscopy. The con-

duction and valence band offsets at ZnO/Ga2O3 interfaces 

are 1.27±0.1eV and 0.20±0.1eV, respectively. These results 

are useful to the understanding and design of ZnO/β-

Ga2O3 based heterojunction devices. 

 

1. Introduction 

Beta-gallium oxide (β-Ga2O3) has attracted much attention 

due to its large bandgap of 4.6~4.9 eV, high bulk electron mo-

bility and eminent chemical stability [1]. Therefore, numer-

ous Ga2O3 based devices including solar-blind photodetec-

tors[2] and metal-oxide-semiconductor field-effect transis-

tors (MOSFETs)[3] have been demonstrated with excellent 

properties. However, limitations still exist in Ga2O3 based de-

vices, such as the slow response (~seconds) of most of the 

Ga2O3 based photodetectors [4] and the poor ohmic contact 

between Ga2O3 and most of metals [5]. Forming a heterojunc-

tion of Ga2O3 and metal oxide semiconductor with a high 

electron concentration has been confirmed as an effective res-

olution for both above problems because the modulation of 

energy barrier at the interface. 

ZnO has attracted much attention because it has a large 

exciton binding energy of 60 meV, high electron concentra-

tion of >1019 cm-3, the lattice mismatch between ZnO and 

Ga2O3 is within 5%[6]. Atomic-layer-deposited ZnO on 

wide-bandgap semiconductors can reduce interface disorder 

and yield more controllable sample to examine the energy 

band alignment, which plays an important role in the carrier 

transport process [7]. In this work, the band alignment of ZnO 

on single crystal β-Ga2O3 was characterized by X-ray photo-

electron spectroscopy (XPS). 

  

2. Experiment 

Sn-doped β-Ga2O3 was alternately cleaned in acetone, iso-

propanol by ultrasonic cleaning for each 10 min, subse-

quently rinsed with deionized water to remove residual or-

ganic solvents. After that, the Ga2O3 substrate was transferred 

into an ALD reactor (Wuxi MNT Micro Nanotech co., LTD, 

China). Both 30 nm and 5 nm ZnO films were deposited on 

cleaned β-Ga2O3 using Zn (C2H5)2 (DEZ) and H2O at the tem-

perature of 150 oC. The growth rate of ZnO was ~1.6 Å per 

cycle. ZnO(30 nm)/β-Ga2O3 was used as bulk standard and 

the ZnO(5 nm)/β-Ga2O3 was used to determine the band 

alignment. A bare bulk β-Ga2O3 was used as control sample. 

XPS (AXIS Ultra DLD, Shimadzu) measurement with a step 

of 0.1 eV was performed on bare β-Ga2O3, 30 nm and 5 nm 

ZnO. To identify the bandgap, the optical transmittance spec-

tra of Ga2O3 and ZnO were measured by ultraviolet-visible 

(UV-VIS) spectroscopy (Lambda 750, PerkinElmer, USA).  

 

3. Results and Discussion 

Fig. 1 shows the plot of (αhv)2  versus hv  for the β-

Ga2O3 substrate. The (αhν)2 as a function of photon energy 

for the as-deposited ZnO film is shown in the inset of Fig.1. 

The optical band gap (𝐸𝑔) of the ZnO film and β-Ga2O3 can 

be evaluated by the Tauc’s relation [8]: (αhν)1/n = A(hv-𝐸𝑔), 

where α is the absorption coefficient, A is a constant, hv is 

the incident photon energy, 𝐸𝑔 is the optical energy bandgap, 

n is 1/2 for the direct bandgap and 2 for the indirect bandgap. 

Here, both ZnO and β-Ga2O3 have typical direct band gap that 

make the value of n is 1/2. Subsequently, 𝐸𝑔  can be ex-

tracted by extrapolating the straight line portion to the energy 

bias at α = 0. Therefore, the extracted 𝐸𝑔 for ZnO and β-

Ga2O3 are 3.18 eV and 4.65 eV, respectively.  

 

 
Fig.1 The plot of (αhv)2

 versus hv for β-Ga2O3 substrate. Inset shows 

(αhv)2
 as a function of hv for ZnO film grown on quartz glass. 

 

Furthermore, the valence band offset (VBO) can be deter-

mined by Kraut’s method using the following equation [9]: 

∆𝐸𝑉 = (𝐸𝐺𝑎 2𝑝
𝐺𝑎2𝑂3 − 𝐸𝑉𝐵𝑀

𝐺𝑎2𝑂3) − (𝐸𝑍𝑛 2𝑝
𝑍𝑛𝑂 − 𝐸𝑉𝐵𝑀

𝑍𝑛𝑂) 

−(𝐸𝐺𝑎 2𝑝
𝐺𝑎2𝑂3 − 𝐸𝑍𝑛 2𝑝

𝑍𝑛𝑂 )                         (1)                         

where  𝐸𝐺𝑎 2𝑝
𝐺𝑎2𝑂3 − 𝐸𝑉𝐵𝑀

𝐺𝑎2𝑂3  (𝐸𝑍𝑛 2𝑝
𝑍𝑛𝑂 − 𝐸𝑉𝐵𝑀

𝑍𝑛𝑂 ) corresponds to 

the energy difference between Ga 2p (Zn 2p) core level (CL) 
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and VBM of bulk β-Ga2O3 (ZnO), and 𝐸𝐺𝑎 2𝑝
𝐺𝑎2𝑂3 − 𝐸𝑍𝑛 2𝑝

𝑍𝑛𝑂  de-

notes as the energy difference between Ga 2p core level and 

Zn 2p core level. Fig. 2 shows all CL spectra including Zn 2p 

of ZnO(30 nm)/β-Ga2O3 and ZnO(5 nm)/β-Ga2O3, Ga 2p of 

bulk Ga2O3 and ZnO(5 nm)/β-Ga2O3, as well as valence band 

spectra from bulk Ga2O3 and ZnO(30 nm)/β-Ga2O3. Fig. 2(a) 

shows the CL spectra of Zn 2p on the ZnO(30 nm)/β-Ga2O3, 

which is quiet symmetrical indicating the uniform bonding 

state, and the peak located at 1020.84±0.1 eV corresponds the 

Zn-O bond. The VBM can be extracted by linearly fitting the 

leading edge of the valence band and the flat energy distribu-

tion from the XPS measurements. By extrapolating the two 

fitted lines as shown in Fig. 2(a), the VBM of ZnO is obtained 

to be 2.11±0.1 eV. In Fig. 2(b), the peak located at 

1117.78±0.1 eV is attributed to the Ga-O bond and the VBM 

is deduced to be 2.74±0.1 eV according to the method men-

tioned above. The CLs difference of Zn 2p and Ga 2p in the 

ZnO(5 nm)/β-Ga2O3 is 96.11±0.1 eV as shown in Fig. 2(c). 

According to equation (1), the valence band offset at the in-

terface of ZnO/Ga2O3 is determined to be 0.20±0.1 eV. 

Based on the calculated 𝐸𝑔 and ∆𝐸𝑉, the conduction band 

alignment (∆𝐸𝐶 ) at ZnO/Ga2O3 interface can be easily de-

duced from the following equation： 

 

 

 
 

Fig.2 High resolution XPS spectra for core level and valence band maxi-

mum(VBM) of (a) Zn 2p core level spectrum and VBM from 30nm ZnO/β-

Ga2O3 (b) Ga 2p core level spectrum and VBM from bare β-Ga2O3 (c) the 

core level spectra of Ga 2p and Zn 2p obtained from high resolution XPS 

spectra of 5nm ZnO/β-Ga2O3. 

 
 

Fig.3 Schematic band alignment diagram of ZnO/β-Ga2O3 heterojunction. 

 

 

∆𝐸𝐶 = (𝐸𝑔
𝐺𝑎2𝑂3 − 𝐸𝑔

𝑍𝑛𝑂 − ∆𝐸𝑉).             (2) 

where 𝐸𝑔
𝐺𝑎2𝑂3  and 𝐸𝑔

𝑍𝑛𝑂 are the energy bandgap for Ga2O3 

and ZnO, respectively. Thereby, the result of ∆𝐸𝐶  is 

1.27±0.1 eV. The detailed energy band diagram for 

ZnO/Ga2O3 is presented in Fig. 3. The interface has a type-I 

band alignment, where the conduction band edge and valence 

band edge of ZnO are located within the bandgap of Ga2O3. 

The conduction band offset ∆𝐸𝐶  is much larger than 

∆𝐸𝑉 , which is beneficial to the impact ionization of the elec-

trons generating an avalanche multiplication effect. 

 

4. Conclusions 

The energy band alignment at atomic-layer-deposited 

ZnO/β-Ga2O3 was determined by XPS. A type-I band align-

ment forms at the ZnO/Ga2O3 interface with conduction band 

offset of 1.27±0.1 eV and valence band offset of 0.20±0.1 eV. 

The large conduction band offset is beneficial to the impact 

ionization of the electrons generating an avalanche multipli-

cation effect in photodetector applications. 
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