Versatile Hydrothermal Route for the Synthesis of Vertically Aligned Arrays Thin Film BaTiO₃ Nanorod Fathah Dian Sari¹, Chotimah², and Indriana Kartini¹ Universitas Gadjah Mada ¹Departement of Chemistry, ²Departement of Physics, Faculty of Mathematics and Natural Sciences Sekip Utara BLS 21 Yogyakarta, Indonesia 55281 E-mail: fathah.dian.sari@mail.ugm.ac.id, indriana@ugm.ac.id #### **Abstract** Recently, BaTiO₃ nanorods thin film has attracted much scientific interest due to its potential application in photovoltaic. In this paper, we synthesize thin film BaTiO₃ in the presence of polyethylene glycol-400 (PEG-400) via rutile TiO2 nanorods by using modified two-step hydrothermal process. X-ray diffraction and scanning electron microscopy are performed to ascertain the formation of BaTiO₃ nanorods. For 210 °C TiO2/BaTiO3 sample, a small peak of cubic BaTiO3 (JCPDS No. 31-0174) was observed. By increasing reaction time, the intensity of BaTiO₃ peaks dramatically enhanced while the rutile TiO2 peaks gradually diminished, evidencing the evolving of BaTiO3 with the consumption of TiO2. Our study provides a versatile hydrothermal route for the synthesis of vertically aligned arrays thin film BaTiO₃ via rutile TiO₂ nanorods. ## 1. Introduction BaTiO₃, known as one kind of perovskite-type metal oxides, shows a variety of potential application due to its strong ferroelectricity as well as its environmental benefits compared to lead-based ceramics.¹ Recently, one-dimensional (1D) BaTiO₃ nanostructures have been extensively studied because of their specific ferroelectric behaviors related to 1D morphologies which can dramatically enhance the ferroelectricity, thus promising for energy harvesting and sensors applications. Although many methods have been developed to fabricate perovskites nanostructure with various size and morphologies, one of the promising and interesting approaches for synthesizing the 1D nanostructured $BaTiO_3$ is the low-cost and easy hydrothermal method. For the integration of the 1D nanostructures into electronic devices and nanomechanical systems, the design of vertically aligned ferroelectric nanorods which typically grown on the conductive glass is essential to directly act as an electrode for the electric field measurement. In this paper we report a versatile hydrothermal route for the synthesis of vertically aligned arrays nanorod BaTiO $_3$ via rutile TiO $_2$ without blocking layer preparation. We find that for 210 °C 2h TiO $_2$ /BaTiO $_3$ sample, a small peak of cubic BaTiO $_3$ was observed. We also find that by increasing reaction time, the intensity of BaTiO $_3$ peaks dramatically enhanced while the rutile TiO $_2$ peaks gradually diminished, evidencing the evolving of BaTiO $_3$ with the consumption of TiO $_2$. ### 2. Result and Discussion The preparation of vertically aligned BaTiO₃ nanorod arrays is based on a two-step hydrothermal reaction, i.e., (i) growing oriented rutile TiO₂ nanorods arrays as a precursor and template for the formation of aligned BaTiO₃, and (ii) converting TiO₂ into BaTiO₃ while simultaneously retaining their morphology in the presence of polyethylene glycol (PEG-400). Firstly, TiO₂ nanorods was grown on FTO by a hydrothermal method in a stainless steel autoclave with Teflon liner of 50 mL capacity. The solution was prepared by adding 20 mL 37% hydrochloric acid in the 20 mL of deionized water and sonicated for 5 min. Subsequently, 0.7 mL of titanium (IV) tetraisopropoxide (97%) was added and further sonicated for 5 min. Two pieces of FTO (1 cm \times 3 cm) were used as a substrate and positioned tilted inside the Teflon liner with the active layer facing the wall. The hydrothermal reactor was filled with the precursor mixture and heated in the 170 °C for 2 h 45 min. After cooling down to room temperature, the sample was washed with deionized water and dried in air. 3 The development of $TiO_2/BaTiO_3$ in the second step hydrothermal reaction include the conversion of TiO_2 nanorods and Ba^{2+} ions into $BaTiO_3$. Specifically, the TiO_2 nanorods were first immersed in a sealed Teflon-lined stainless steel autoclave (50 ml) that filled with a solution of 0.236 g $Ba(OH)_2.8H_2O$ in 5 mL polyethylene glycol 400 (PEG-400), 5 mL ethanol, 1.5 mL 2-propanol, 0.6 g tetrabutylammonium hydroxide solution (TBAH, 40 wt%), and 7 mL deionized water. The hydrothermal reactor was then transferred to an oven and reacted at 210 °C for 2 h - 6 h. After cooling down to room temperature, the sample was washed with deionized water, ethanol, and dried in air.⁴ The evolution of the crystallographic structure during the hydrothermal treatment was investigated with XRD analysis, and the resulting spectra are collected in Figure 1. Figure 1 (b) shows the X-ray diffraction (XRD) patterns of vertically grown TiO₂ nanorods on FTO glass substrate, where the diffraction peaks correspond to the crystal plane of rutile TiO₂ (JCPDS 21-1276). TiO₂ rutile powder contains crystals with random orientation, and the (110) has the highest intensity which shows similarity for the rod-shaped rutile TiO₂ nanoparticles. In the present case, the (110) peak intensity is noticeably weak, whereas the (101) has the highest intensity. The highly intense (101) peak along with the enhanced (002) peak in the nanorods film suggests that the rutile crystal grows with (101) plane parallel to the FTO substrate and the nanorods are oriented along the (002) direction.² Fig. 1. Comparison of diffraction intensity between (a) FTO glass (Dyesol); (b) TiO₂ grown on FTO; (c) BaTiO₃ at 210 °C for 2 h. Figure 1 also confirms the conversion of TiO₂ nanorod arrays into BaTiO₃. After the second hydrothermal reaction, it is shown that rutile TiO₂ nanorod arrays on FTO glass have been converted to BaTiO₃. For 210 °C 2 h BaTiO₃ sample, the diffraction peaks in figure 1 (c) correspond to the crystal plane of BaTiO₃ (JCPDS 31-0174). The strong peak of BaTiO₃ along with a very small peak belonging to the residual TiO₂ phase in the nanorod arrays. With the rising of reaction time, the intensity of TiO2 peaks gradually diminished, evidencing the evolving of BaTiO₃ with the consumption of TiO₂ as shown in figure 3. The strong and sharp peaks suggest that BaTiO₃ nanorods are highly crystalline. The successful transformation of BaTiO₃ nanorods is also confirmed due to the presence of Ba, O, and Ti in EDX pattern without any other metal element, which indicates the high purity of the product. Fig. 2. X-ray diffraction patterns of BaTiO₃ synthesized at 210 °C for (a) 2 h; (b) 4 h; (c) 6 h. The reaction through a second hydrothermal involves a dissolution, nucleation, and recrystallization mechanism in an alkaline solution, in which the OH⁻ plays a key role in the process.² The alkaline environment is kept at the pH value around 12.5 to prevent etching of the FTO-coated glass substrate and allows the titanium dissolution by the hydrolysis of Ti-O-Ti bonds to form Ti(OH)₄ and then reacts with Ba-ions to crystallize BaTiO₃ while maintaining the morphology of the template arrays.³ Fig. 3. a plane-view SEM images of (a) rutile TiO₂; (b) BaTiO₃ nanorod films. The growth of BaTiO₃ crystals in the vertical (110) direction is not preferable due to the non-polarity, thus induces higher surface energy. To overcome this difficulty, we introduce PEG-400. Because the PEG-400 has polarity in the (110) surface plane, it is expected to assist the orientation of the BaTiO₃ crystal in the (110) plane. This is in fact confirmed by our SEM analysis as shown in Figure 3, where the 1D nanorods thin film BaTiO₃ crystal is clearly observed with mechanically strong on FTO substrate. ## 3. Conclusions We have shown a versatile hydrothermal technique to prepare vertically aligned arrays of $BaTiO_3$ on the FTO substrate. It is also shown that PEG-400 has significant role to direct the crystal growth of nanorods $BaTiO_3$. Complete conversion of TiO_2 into $BaTiO_3$ is still under investigation. #### Acknowledgments We would like to express sincere thanks to Universitas Gadjah Mada for financial support. ## References - [1] Hui-Seon, et al., Nano Lett. 2013, 13, 2412-2417. - [2] Andrea Lamberti, et al., NewJ. Chem. 2014, 38, 2024. - [3] Zhi Zhou, et al., Appl. Matter. Interfaces. 2013, 5, 11894-11899. - [4] Weiguang Yang, et al., Nano Lett. 2015, 15, 7574-7580. - [5] Wen Cai, et al., Ceramics International. 2015, 41, 4514-4522.