Device Size Dependence of Hf-based MONOS Nonvolatile Memory for Multi-level 2-bit/cell Operation

Sohya Kudoh¹, and Shun-ichiro Ohmi²

Department of Electrical and Electronic Engineering, Tokyo Institute of Technology J2-72, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan Phone: +81-45-924-5481 E-mail: kudoh.s.ab@m.titech.ac.jp¹, ohmi@ee.e.titech.ac.jp²

Abstract

This paper investigated the device size dependence of Hf-based Metal-Oxide-Nitride-Oxide-Silicon (MON-OS) nonvolatile memory (NVM) for the 2-bit/cell operation. It was found that 2-bit/cell operation was realized with the device of gate length (L) and width (W) = 2 - 10/15 - 90 μ m. Furthermore, it was realized that electron injection from drain region affected I_D-V_G transfer characteristics at V_{TH} even for L/W = 2/90 μ m.

1. Introduction

Recently, the charge trapping (CT) type NVM such as MONOS has been attracted much attention [1,2]. Furthermore, 2-bit/cell operation was necessary to achieve the high integration [3,4]. It was found that Hf-based MON-OS NVM was able to realize 2-bit/cell operation by changing the electron injection region from source region to drain region [5]. Furthermore, it is necessary to investigate the effect of injected electron from each region on the drain current characteristics to improve 2-bit/cell characteristics.

In this paper, 2-bit/cell characteristics dependence on device size for Hf-based MONOS NVM were investigated.

2. Experimental Procedure

The Hf-based MONOS NVM was fabricated on p-Si(100) substrate using the typical gate-last process [2]. After the channel stop ion implantation and the local oxidation of silicon (LOCOS) isolation, source and drain (S/D) ion implantation was carried out. Then, the $HfN_{0.5}/HfO_2/$ HfN_{1.0}/HfO₂ (MONO) structure with thickness of 10/10/ 3/2 nm respectively, was in-situ deposited by ECR plasma sputtering at room temperature (RT) [2]. Then, post-depo sition annealing (PDA) was carried out at 600°C/1 min in N₂ of 1 SLM. Next, the contact hole was formed by reactive ion etching (RIE) with Ar/Cl₂ of 50/20 sccm [2]. After the Al electrode was evaporated and patterned to form pad electrode, the HfN_{0.5} metal layer was etched by DHF. After Al back electrode was evaporated, post-metallization annealing (PMA) was carried out at 300°C/10 min in $N_2/4.9\%H_2$ at 1 SLM. The gate length (L) and width (W) were $L/W = 2 - 10/15 - 90 \mu m$. Figures 1 (a) and 1 (b) show the schematic cross-section and the plane-view of Hf-based MONOS NVM [2].

Fig. 1 (a) Schematic cross-section (A-A') of Hf-based MONOS NVM and (b) plane-view [2].

The electrical characteristics of NVM were evaluated by I_D -V_G. The operation conditions were set as V_{PGM}/t_{PGM} of 6 V/2 ms, V_{ERS}/t_{ERS} of -10 V/1 s and V_{DS} of 1.5 - 5 V. All measurements were carried out at RT in air.

3. Results and Discussion

Figure 2 shows the schematic description of 4 states for Hf-based MONOS NVM when the operation conditions were set as V_{PGM}/t_{PGM} of 6 V/2 ms, V_D (V_S) of 1.5 - 5 V and V_S (V_D) of 0 V, which injected the electron from the source (drain) region. Figure 3 (a) shows the I_D-V_G characteristics of "11" and "01" states with changing the read direction. Figures 3 (b) and 3 (c) show the schematics of forward read and reverse read operation of each "01" state, respectively. The forward (reverse) read operation condition was set as V_D (V_S) of 1.5 V and V_S (V_D) of 0 V. It was found that I_D-V_G transfer characteristics were not affected by read direction.

Fig. 3 (a) I_D-V_G characteristics of "11" and "01" states. V_{PGM}/t_{PGM} was 6 V/2 ms and V_{DS} was 1.5 V at the program and read operation. (b) Schematics of forward read operation and (c) reverse read operation of "01" state.

 $\label{eq:Fig. 4 ID-VG} \begin{array}{ll} \text{Fig. 4 ID-VG characteristics of 4 states.} & V_{PGM}/t_{PGM} \text{ was } 6 \text{ V/2} \\ \text{ms and } V_{DS} \text{ was } 1.5 \text{ V} \text{ at the program.} & V_{DS} \text{ was } 1.5 \text{ V} \text{ at the} \\ \text{forward read operation.} \end{array}$

Fig. 5 V_{ON} and V_{TH} at each state. Open symbol denoted V_{DS} of 5 V at program operation. V_{DS} was 1.5 V at the forward read operation.

Figure 4 shows the I_D-V_G characteristics of 4 states with changing the electron injection region. Here, the V_{ON} and V_{TH} were defined as the V_G intercept of the linear extrapolation of the I_D -V_G characteristics and the V_G at I_D of 0.1 $\mu A/\mu m$, respectively. Figure 5 shows the V_{ON} and V_{TH} at each state extracted from I_D - V_G characteristics. V_{ON} at "10" state was 0.1 - 0.3 V smaller compared with V_{ON} at "01" state in both cases of V_{DS} of 1.5 V and 5 V at the program operation. However, V_{TH} at "10" state was 0.2 V larger than V_{TH} at "01" state. This is because I_D -V_G characteristics of "10" state at V_{TH} was steeper compare with the states at "01" and "00" as shown in Fig. 4. It was found that drain region electron injection affected I_D-V_G transfer characteristics at $V_{\text{TH}}.$ Figures 6 (a) and 6 (b) show the gate width dependence on V_{ON} and V_{TH} , respectively. The dependence of V_{ON} and V_{TH} on "10" and "01" states were not changed with decreasing the gate width as shown in Figs. 6 (a) and 6 (b). Furthermore, Figs. 6 (c) and 6 (d) show the gate length dependence on V_{ON} and V_{TH} , respectively. The dependence of V_{ON} and V_{TH} on "10"

Fig. 6 Gate width dependence on (a) V_{ON} and (b) V_{TH} at each state. Device sizes were $L/W = 10/15 - 90 \ \mu m$. Gate length dependence on (c) V_{ON} and (d) V_{TH} at each state. Device sizes were $L/W = 2 - 10/90 \ \mu m$. V_{DS} was 1.5 V at the forward read operation.

and "01" states were not changed even for $L/W = 2/90 \mu m$. These results suggested that the electron injections from S/D region were able to be read independently even for short channel in the case of Hf-based MONOS NVM.

4. Conclusions

We investigated the electrical characteristics of Hf-based MONOS NVM for 2-bit/cell operation. It was found that 2-bit/cell operation was realized utilizing fabricated devices of $L/W = 2 - 10/15 - 90 \mu m$. Furthermore, electron injection from drain region affected I_D-V_G transfer characteristics at V_{TH} even for $L/W = 2/90 \mu m$. In conclusion, Hf-based MONOS NVM is one of the candidates to realize 2-bit/cell operation with scaling.

Acknowledgements

The authors would like to thank Prof. H. Munekata, Prof. Y. Kitamoto, Assistant Prof. N. Nishizawa, and Mr. Y. Maeda of Tokyo Institute of Technology for their support for this research. The authers also thank the late Prof. Emeritus T. Ohmi, Prof. T. Goto, Prof. R. Kuroda and Assistant Prof. T. Suwa of Tohoku University, Dr. M. Shimada, Mr. M. Hirohara and Mr. I. Tamai of JSW-AFTY for their support and useful discussions for this research. This work was partially supported by JSPS KAKENHI Grant Number JP17J10752 and the Cooperative Research Project of Research Center for Biomedical Engineering, Ministry of Education, Culture, Sports, Science and Technology.

References

- [1] C. Zhao et al., Materials, 7, pp. 5117-5145 (2014).
- [2] S. Kudoh et al., SSDM, D-2-03, pp. 24-25 (2017).
- [3] H-C. Lai et al., JJAP, 47, pp. 8369-8347 (2008).
- [4] B. Eitan et al., IEEE EDL, 21, pp. 543 545 (2000).
- [5] S.Kudoh, et al., DRC (2018). [accepted]