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Abstract 

Tunable three-dimensional silicon nitride racetrack 

resonators were experimentally demonstrated, with a mi-

croring resonator on a bottom layer and a feedback cross-

coupled waveguide on a top layer. The filter performance 

such as the resonance wavelength and extinction ratio can 

be thermo-optically tuned based on the electrical control 

of a heater above the feedback waveguide. The presented 

device has a potential to be applied as a tunable modula-

tor/switch as well as a highly-sensitive sensor. 

 

1. Introduction 

Silicon nitride (Si3N4) is a promising wave-guiding mate-

rial for integrated photonics applications due to its wide trans-

parency bandwidth, compatibility with the complementary-

metal-oxide-semiconductor (CMOS) technology, and negli-

gible nonlinear (two-photon) absorption [1]. Among various 

Si3N4 integrated devices, an optical micro-cavity is a versatile 

element and has been utilized in numerous linear and nonlin-

ear optical applications [2]. Si3N4 platform is also favorable 

for realizing three-dimensional vertical integration [3, 4], 

which can increase integration density, enhance chip func-

tionality, facilitate active-passive integration, and offer an im-

proved fabrication tolerance. 

It is desirable to enable active control on the resonance 

characteristics in order to advance the functionality of reso-

nator filter. It has been shown that effective resonance control 

can be fulfilled by means of waveguide cross-coupling to the 

resonator, while a U-bend waveguide essentially acts as an 

external feedback to the resonator, which can also be used for 

phase-shift keying modulator. In the following, two three-di-

mensional cross-coupled Si3N4 racetrack resonators are fab-

ricated and characterized, with the microring resonator on a 

bottom layer and the cross-coupled waveguide on a top layer 

[5]. The filter performance such as the resonance wavelength 

and extinction ratio can be tuned based on the thermo-optical 

control of the phase-shift of cross-coupled waveguide. 

 

2. Device Fabrication and Characterization 

Fig. 1 illustrates a schematic of the three-dimensional 

Si3N4 racetrack resonator with waveguide cross-coupling, 

while Fig. 1(a) shows a resonator with U-bend self-coupled 

waveguide and Fig. 1(b) presents a straight self-coupled 

waveguide case. The bottom layer resonator is cross-coupled 

to the top layer waveguide, with metal heaters placed above 

the waveguide or resonator to achieve an active phase-shift 

control. As a proof-of-concept, the three-dimensional silicon 

nitride resonators were fabricated based on the electron-beam 

lithography (EBL) and reactive ion etching (RIE). An InP 

substrate was adopted with consideration of the ease of wafer 

splitting, in order to obtain flat facets for a high coupling ef-

ficiency with the external fiber. A 4-μm-thick SiO2 buffer 

layer was first deposited by plasma-enhanced-chemical-va-

por-deposition (PECVD), then a 250-nm-thick Si3N4 was de-

posited by electron-cyclotron-resonance (ECR)-plasma-en-

hanced-sputtering, which is a room-temperature film deposi-

tion facility and can facilitate the potential integration of 

Si3N4 device with active semiconductor materials. Si3N4 

thickness is chosen by a trade-off between a minimum value 

necessary for reducing waveguide bending-related loss and a 

maximum one in order to avoid the mechanical rupture 

caused by a high tensile stress. With a set of global alignment 

marks (consisting of 100-nm gold) formed by lift-off tech-

nique, the microring resonator was patterned by EBL and RIE, 

and electron-beam resist ZEP520 was used directly as an 

etching mask. After the wafer cleaned by using a wet chemi-

cal process and oxygen plasma, a 1.5-μm-thick gap SiO2 layer 

was deposited. With the developed planarization technique by 

incorporating chemical-mechanical-planarization (CMP) and 

RIE, the gap SiO2 surface was planarized to a thickness of 

about 750 nm. Then a second 240-nm-thick Si3N4 core was 

deposited and patterned, with the assistance of alignment 

marks. To check the control efficiency of metal heater, a thick 

3.1-μm SiO2 film was formed as cladding layer by PECVD, 

and Ti/Pt/Au heaters (40/10/10 nm thick, 5-m wide) were 

fabricated by lift-off technique, placed above the feedback 

waveguide. Finally, the wafer was backside-polished and 

cleaved for measurement.  

 

Fig. 1. Schematic of a three-dimensional silicon nitride racetrack res-

onator with a (a) U-bend and (b) straight self-coupled waveguide re-

spectively. 
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The bottom layer racetrack resonator has a ring radius of 

50 μm and a width of 1.5 μm with a trade-off between the 

single mode propagation condition and the bending-related 

loss. The top layer cross-coupled waveguide width was chose 

to be 1.7 μm, in order to realize a phase-matching with the 

bottom resonator. The coupling length between the resonator 

and waveguide is 30 μm. Fig. 2 shows the normalized static 

transmission spectrum of the vertically-coupled filter with a 

U-bend cross-coupled waveguide as in Fig. 1(a), recorded by 

a rapid spectrum measurement of an optical spectrum ana-

lyzer (OSA) with a 0.1-nm resolution. Fine spectrum meas-

urement around 1560-nm wavelength was made with OSA 

resolution of 0.01 nm, as shown in Fig. 3. At 1559.3-nm, an 

extinction ratio of more than 14 dB and free spectral range 

(FSR) of 2.7 nm can be realized with a quality factor of about 

1.88×104. For that of a straight waveguide coupled case (Fig. 

1(b)), similar spectraum can be obtained (not shown here). 

 

Fig. 2. Measured static transmission spectrum in the C+L band. 

 

Fig. 3. Measured transmission spectra with varying voltage applied 

to heater above the U-bend cross-coupled waveguide. 

The filter performance can be tuned effectively with ap-

plying voltage to heater. Fig. 3 shows the tuning effect for the 

U-bend cross-coupled waveguide case (Fig. 1(a)). With in-

creasing the voltage, the resonance wavelength red-shifts, 

while the extinction ratio can be periodically tuned, which 

first increases to a maximum value, then decreases to an am-

plitude close to that of the ripples, and then increases again. 

The resonator can work as a notch filter while the spectral 

shape can be maintained during phase tuning. A 4.4-V voltage 

can roughly cause the resonance wavelength increase 0.8 nm 

while a 2.2-V voltage change (1 to 3.2 V) can cause an ex-

tinction ratio varying of about 14 dB. More efficiently tunable 

filter can be expected through optimizing the device design 

and fabrication process. 
Fig. 4 shows the tuning effect for the straigth cross-cou-

pled waveguide case (Fig. 1(b)). With increasing the voltage 

to the resonator, the resonance wavelength can be tuned and 

have a red-shift, with the extinction ratio changes little. But 

when applied voltage to the cross-coupled waveguide, little 

tuning effect can be observed, which is different from that 

with a U-bend couping waveguide. 

 
Fig. 4. Measured transmission spectra with varying voltage applied 

to heater above the resonator for a straight waveguide coupled case. 

3. Conclusions 

   To summarize, two three-dimensional cross-coupled sili-

con nitride racetrack resonators were experimentally demon-

strated based on the CMP planarization method. The filter 

performance such as the resonance wavelength can be tuned 

based on the thermo-optical control of the phase of feedback 

waveguide for the U-bend coupling case, but for the straight 

waveguide coupling case, only tuning the phase of the rasona-

tor can work. These three-dimensional devices could be ex-

pected to have more application prospects such as construct-

ing frequency comb, tunable modulator/switch, as well as 

highly-sensitive sensor. 
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