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Abstract 
   We present experimental measurements of an electro 
absorption modulator developed on a 800 nm thick SOI 
platform with data rate characteristics up to 56Gb/s. We 
also introduce compositional engineering of a silicon-ger-
manium waveguide for bandgap tuneability. Our results 
reveal a significant change in the material composition, 
which provide the ability to tune the operating wave-
length of individual optical modulators.  
 
1. Introduction 
   The strong need for high performance data center has led 
to the fast development of low cost CMOS compatible de-
vices and circuits. A wide variety of research studies have 
been carried out in order to enhance the now standard Silicon-
On-Insulator (SOI) platform with novel functionalities. 
Among them the development of fast, efficient, and compact 
integrated optical modulators is critical for the realization of 
next generation data transceivers [1-3].  

The last decade has seen a growing interest dedicated to 
the growth of Silicon Germanium (SiGe) alloys [4, 5, 6] 
within the SOI platform. In particular, GeSi alloys with small 
compositional fraction of Si (e.g. <2%) have been demon-
strated more than 10 years ago [4] to be an excellent solution 
to obtain fast and efficient Electro-Absorption Modulators 
(EAM) [4,7] around 1550nm. Based on the Franz-Keldysh 
effect, such EAMs operate close to the GeSi alloy direct band 
gap energy, hindering the operation over the whole C-Band. 
For this reason, a method to tune the material composition 
within each device is most awaited. For example, engineering 
of the diffusion rates during a Rapid Melt Growth of Ge on Si 
[6] has been presented as a route to obtaining structures with 
different adjusted GeSi alloys, in a controlled way and on the 
same chip. However, this process is done at a high tempera-
ture (above 930 °C) hindering back end integration on a 
standard CMOS line. In parallel, Laser Annealing with short 
exposure duration has been used [7] to prevent Ge/Si inter-
face intermixing and decrease the number of Thread Disloca-
tions (TD).  

In this work, we firstly present an innovative Si/GeSi het-
ero-structure waveguide modulator developed on an 800 nm 
SOI platform, that achieves a dynamic ER of 5.2 dB at a data 
rate of 56.2 Gb/s with a modulator power of 44 fJ/bit and elec-
tro optic bandwidth of 56 GHz [13]. We then report the com-
positional modification of GeSi planar microstructures using 
rapid thermal annealing and continuous wave (c.w.) laser ra-
diation. The analysis of the transmission spectra of integrated 
SiGe waveguides that have been annealed using RTA or laser 
annealed with different thermal energy shows a noticeable 

change in the absorption band-edge, revealing the change in 
material composition. 
 
2. Modulator design 

   We propose a wrap-around PIN hetero-structure device re-
alized in a rib waveguide, with dimensions of 1.5 µm x 40 
µm, etched within a selectively grown GeSi-on-Silicon layer 
in a 800 nm thick SOI wafer. The advantage of this hetero-
structure design, shown in Fig. 1 relies on the electric field 
distribution independency from the waveguide width which 
can also be tailored to improve, if required, the optical mode 
confinement and propagation of both polarizations [11]. 
 

 
Fig. 1 A schematic Cross-section design of heterostructure (Top) 
and SEM images cross-section from FIB cut (Bottom). [11] 
 
As all the EAMs are fabricated at the same time on awafer 
scale, the GeSi alloy composition is the same for all devices, 
which therefore operate around the same electronic band-gap. 
In order to extend the spectral range of operation, the fabri-
cated SiGe waveguides can go through two different type of 
anneals such as wafer scale RTA or localized laser annealing. 
The measurement results are summarized in TABLE I for 
RTA anneals. Annealing the samples causes a blueshift of the 
band edge up to 32 nm suggesting an increase of Silicon in 
the alloy and/or a reduction of strain. 

 
TABLE I.  RTA data: Bandgap energy measured for SiGe 

waveguides against annealing time. 
Anneal Time [min] Bandgap Energy (800nm) [nm] 

0 1579 
5 1569 

10 1547 
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In order to extend the work to localized waveguide, the 
fabricated modulators are then exposed to a laser radiation of 
several watts at 940nm using the setup depicted in Fig.2. A 
CCD camera is used to image the sample surface and control 
the relative position between the laser beam spot and our de-
vice using a set of linear micro-precision stages. Finally, the 
laser beam is focused on the GeSi EAM using a 10x micro-
scope objective, producing a spot with a diameter of ~50 µm 
on the sample surface. The devices are exposed to the pump 
laser for several duration to assess the effective band-gap shift. 
Transmission measurements on each annealed devices al-
lowed for the retrieval of the band-gap energy by means of 
the well-known Tauc band-edge absorption model. Fig. 3 
plots the band-edge wavelength of the annealed devices as a 
function of the dose energy of the laser. A reference device is 
kept unexposed and presents and band-edge at 1585nm. De-
vices pumped with higher energy and exposure time present 
a red-shift up to 18nm depending on the dose which appears 
to saturates for doses as low as 50J. Such red-shifts are coher-
ent with the gradual separation of Ge and Si atoms as the sil-
icon segregate towards hotter area of the material in line with 
the phase diagram of the compound.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Experimental setup. BS, beam splitter; MO, microscope ob-
jective. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 tuning band-gap using laser anneal.  
 
3. Conclusions 
   We have developed a high-speed GeSi waveguide EAM 
on an 800 nm SOI platform, operating at 1566 nm, with a data 
rate, limited by the measurement setup, of 56.2 Gb/s, and dy-
namic ER of 5.2 dB. Having a compact footprint (60 µm2), a 
power consumption of 44 fJ/bit and EO modulation band-
width of 56 GHz, this wrap-around junction design permits, 
a simple, customizable and tolerant fabrication of compact-

high-speed electro absorption modulators. RTA enables a blue 
shift of the bandgap of the waveguides whereas the technique 
to engineer the composition of GeSi via laser-induced local-
ized heating of the material results in a clear red-shift trend of 
the absorption band-edge of the devices. Our technique al-
lows for wafer scale and highly localized tuning of the mate-
rial composition to control the optoelectronic properties, such 
as the optical transmission, which could be used for the pro-
duction of multiple modulator in same area with different op-
eration wavelength. 
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