# Significant improvement of photoresponsivity of polycrystalline BaSi<sub>2</sub> films directly formed on heated Si(111) substrates by sputtering

S. Matsuno<sup>1</sup>, R. Takabe<sup>1</sup>, S. Yokoyama<sup>1</sup>,

K. Toko<sup>1</sup>, M. Mesuda<sup>2</sup>, H. Kuramochi<sup>2</sup>, T. Suemasu<sup>1</sup>

<sup>1</sup>Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan

<sup>2</sup>Tosoh Corporation, Advanced Materials Research Laboratory, Ayase, Kanagawa 252-1123, Japan

### Abstract

We succeeded in forming approximately 150-nm-thick BaSi2 films on a Si(111) substrate at 600 °C. The reduction in electron concentration ( $n = 2 \times 10^{16}$  cm<sup>-3</sup>) by three orders of magnitude compared to that previously reported ( $n = 7 \times 10^{19}$  cm<sup>-3</sup>) and the resultant photoresponsivity enhancement by 400 times were achieved. The photoresponsivity increased with bias voltage  $V_{\text{bias}}$  applied between the top and bottom electrodes and reached approximately 0.2 A/W at 1.5 eV at  $|V_{\text{bias}}| = 0.5$  V, corresponding to EQE=40%.

# 1. Introduction

Barium disilicide (BaSi<sub>2</sub>) [1,2] has attractive properties for solar cell applications such as a band gap of 1.3 eV [3], a large absorption coefficient ( $\alpha$ ) of 3 × 10<sup>4</sup> cm<sup>-1</sup> at 1.5 eV [3], inactive grain boundaries [4], and a large minoritycarrier lifetime ( $\tau \sim 10 \ \mu s$ ) [5]. We have achieved efficiencies approaching 10% in p-BaSi2/n-Si heterojunction solar cells [6]. Thus far, a lot of studies have been carried out on BaSi2 epitaxial films grown by molecular beam epitaxy (MBE). MBE is, however, not a practical method to fabricate large-area solar cells. We therefore have formed BaSi2 films by sputtering. However, the electron concentration was more than 10<sup>19</sup> cm<sup>-3</sup>, and therefore the photoresponsivity was very small for BaSi<sub>2</sub> films, which were formed by radio-frequency (RF) magnetron sputtering at room temperature (RT) and post annealing at 600 °C [7]. In this work, we formed BaSi<sub>2</sub> films directly on a heated Si(111) substrate by sputtering. We first investigated the dependence of Ba to Si atomic ratio of a deposited film on pressure (P). We achieved the formation of 150-nm-thick poly-crystalline BaSi<sub>2</sub> films directly on a Si (111) substrate heated at 600 °C using helicon-wave excited plasma (HWP) sputtering. The photoresponsivity was drastically enhanced by approximately 400 times compared to those reported [7].

# 2. Experiment

Si(111) substrates were loaded into the HWP sputtering system (ULVAC, MB00-1014) after cleaning the substrates. The polycrystalline  $BaSi_2$  target, made by Tosoh Corporation, was used. In the first experiment, the *P* was varied from 0.25–3.0 Pa, and the flow rate of Ar was set at 10 sccm. The RF power was set at 100 W. The samples were covered with 20-nm-thick Al to prevent oxidation. The atomic ratio was measured by Rutherford backscattering (RBS) measurements. As described later, the obtained Ba atomic ratio was deficient from stoichiometry, and hence

two or three small pieces of platelike Ba  $(1.0 \times 1.0 \text{ cm}^2)$  was added on the BaSi<sub>2</sub> target.

In the second experiment, we attempted to form BaSi<sub>2</sub> films at a heated Si(111) substrate at 600 °C. Crystalline quality of the grown layers was characterized using Raman spectroscopy. For photoresponsivity measurement, a 3-nm-thick a-Si capping layer was formed to prevent oxidation [3]. 80-nm-thick indium tin oxide (ITO) surface electrodes with a diameter of 1 mm and Al rear electrodes were fabricated by RF sputtering. The heavily doped n<sup>+</sup>-Si(111) substrate ( $\rho < 0.01 \ \Omega$ cm) was used to make the contribution of photogenerated carrier in the Si substrate negligible. The carrier concentration was measured using high-resistivity n-Si (111) ( $\rho$ =1000-10000 $\Omega$ cm) substrate to prevent Si substrate signal at RT by the van der Pauw method.

## 3. Result and discussion

Figure 1(a) shows the RBS atomic ratio of Ba and Si atoms of the films sputtered at RT. The dotted lines and the solid lines present results sputtered without and with the 1.0 cm<sup>2</sup> platelike Ba source on the BaSi<sub>2</sub> target, respectively. The Si atomic ratio of the film sputtered at P = 0.25 Pa was more than 85%, and gradually decreased with increasing P. However, the Si atomic ratio was more than 66.7% even at P = 3.0 Pa, that is more than the Si atomic ratio of the BaSi<sub>2</sub> target. In the formation of BaSi2 films on a heated Si substrate, the diffusion of Si atoms from the Si substrate occurs [8]. Hence, the Si atomic ratio deposited at RT should be smaller than 66.7% at a given P to form BaSi<sub>2</sub> directly on a heated Si substrate. As shown in the solid line in Fig. 1, the Si atomic ratio decreased by putting one Ba source on the target in the whole range of P, meaning that the addition of the Ba sources on the target is a practical means to increase the Ba atomic ratio of the sputtered film. As shown in Fig. 1(b), the deposition rate of the film decreased significantly with P. The Ba/Si atomic ratio and the deposition rate of the sputtered film depend significantly on P. This is caused by the difference in atomic weight among Si, Ar, and Ba atoms, which are 28.08, 39.95, and 137.33, respectively.

Figure 2 shows grazing-incidence (GI)  $2\theta$  X-ray diffraction (GI-XRD) patterns with Cu K $\alpha$  radiation of samples A and B sputtered at 600 °C and at P = 0.25 Pa, where the number of platelike Ba source was two and three, respectively. For reference, the calculated diffraction pattern of orthorhombic BaSi<sub>2</sub> was also shown. All the observed diffraction peaks were assigned to BaSi<sub>2</sub>.



Fig. 1. (a) Ba and Si atomic ratios against P for samples sputtered without (dotted lines) and with (solid lines) the presence of Ba source on the BaSi<sub>2</sub> target, and (b) dependence of measured deposition rate of the sputtered film decreased on P by presence of the Ba source on the BaSi<sub>2</sub> target (solid lines).



Fig. 2. GI-XRD patterns of the films sputtered at 600  $^{\circ}$ C on a Si(111) substrate by adding two or three Ba sources on the BaSi<sub>2</sub> target.

Figure 3 shows the typical example of Raman spectrum of the sample B at P = 0.25 Pa. Three pieces of Ba source were placed on the BaSi<sub>2</sub> target. The Raman lines originate from Si tetrahedra with  $T_h$  symmetry in the lattice of BaSi<sub>2</sub>. Identification of Raman lines is given in Ref. [9]. The transverse optical phonon line of Si (Si<sub>TO</sub>) was observed even in such a thick BaSi2 film. Considering that the absorption coefficient of BaSi2 at a wavelength of 532 nm is  $\alpha = 3 \times 10^5$  cm<sup>-1</sup> [10], and the penetration depth of the laser light is limited to around  $1/\alpha \times 3 \sim 0.1 \mu m$ , the Si<sub>TO</sub> signal originated from Si precipitates in the BaSi<sub>2</sub> film. Similar Si<sub>TO</sub> signals were detected in BaSi<sub>2</sub> [11,12] and  $\beta$ -FeSi<sub>2</sub> films [13] by Raman spectroscopy, meaning that the excess Si atoms became crystallized in the form of crystalline Si. The growth rate of BaSi2 was approximately 0.4 µm per hour, which is approximately four times higher than that by MBE.



Fig. 3. Raman spectrum of sample B

Figure 4 shows the photoresponse spectra of sample B formed at P=0.25 and 0.4 Pa. Various bias voltages ( $V_{\text{bias}}$ ) were applied to the front ITO electrode with respect to the Al electrode for the photogenerated holes in the n-BaSi<sub>2</sub> to be extracted to the ITO electrode. The photoresponsivity of sample B after the a-Si cap increased sharply for photons with energies greater than the band gap of BaSi2 and reached 0.2 A/W at 2.0 eV at  $V_{\text{bias}} = 0.5$  V for sample formed at P=0.4Pa. This value corresponds to EQE = 40%, and is more than 400 times higher than that previously reported [7]. Such improvement in photoresponsivity is ascribed to significant reduction of carrier concentration of the film. The electron concentration of BaSi\_2 in sample B was  $2 \times 10^{16} \text{ cm}^{\text{-3}}$  at RT by Hall measurement. This value is approximately two orders of magnitude smaller than that reported [7]. On the basis of these results, sputtering shows promise for use in the formation of BaSi<sub>2</sub> films.



Fig. 4. Photoresponse spectra of sample B after the a-Si cap under various bias voltages.

### Conclusions

Polycrystalline BaSi<sub>2</sub> films were formed by HWP using a BaSi<sub>2</sub> target. The deposited Ba to Si atomic ratio was varied in the range from approximately 1 : 9 to 1 : 2 by increasing the vacuum level from 0.25 to 3.0 Pa during the sputtering. By putting small pieces of platelike Ba sources on the BaSi<sub>2</sub> target during the sputtering, we succeeded to form approximately 150-nm-thick orthorhombic BaSi<sub>2</sub> films on a heated Si(111) substrate at 600 °C. The formation of BaSi<sub>2</sub> was evidenced by x-ray diffraction and Raman spectroscopy. The photoresponsivity was distinctly improved and reached 0.2A/W at 2.0 eV at at  $V_{\text{bias}} = 0.5$  V.

#### References

- [1] J. Evers et al., Chem. Int. Ed. Eng. 16 (1977) 659.
- [2] M. Imai et al, J. Alloys Compd. 224 (1995) 111.
- [3] K. Morita et al., Thin Solid Films 508(2006) 363.
- [4] M. Baba et al., J. Appl. Phys. 120 (2016) 085311.
- [5] K. O. Hara et al., Appl. Phys. Express 6 (2013) 112302.
- [6] S. Yachi et al., Appl. Phys. Lett. 109 (2016) 072103.
- [7] T. Yoneyama et al., Thin Solid Films 534 (2013) 116.
- [8] R. Takabe et al., J. Appl. Phys. 123 (2018) 045703.
- [9] Y. Terai et al., Jpn. J. Appl. Phys. 56 (2017) 05DD02.
- [10] K. Toh et al., Jpn. J. Appl. Phys. 50 (2011) 068001.
- [11] R. Takabe et al., J. Appl. Phys. 123 (2018) 045703.
- [12] Y. Terai et al., Jpn. J. Appl. Phys. 56 (2017) 05DD02.
- [13] M. Iinuma et al., Jpn. J. Appl. Phys. Conf. Proc. 5 (2017) 01110