Crystallographic, optical, and electronic properties of Cu(In,Ga)Se₂ and Cu-deficient phases, Cu(In,Ga)₃Se₅ and Cu(In,Ga)₅Se₈ in Cu₂Se₋(In,Ga)₂Se₃ pseudo-binary System

Tsuyoshi Maeda, Kenta Ueda, and Takahiro Wada

Department of Materials Chemistry, Ryukoku University Seta, Otsu, 520-2194, Japan Phone: +81-77-543-7468 E-mail: tmaeda@ad.ryukoku.ac.jp

Abstract

We obtained single-phase $Cu(In_{1-x}Ga_x)Se_2$ ($0.0 \le x \le 1.0$) solid solution samples with chalcopyrite-type structure, and $Cu(In_{1-x}Ga_x)_3Se_5$ ($0.0 \le x \le 0.8$) and $Cu(In_{1-x}Ga_x)_5Se_8$ ($0.5 \le x \le 1.0$) samples with stannite-type structure. Their energy levels of the valence band maximum (VBM) were measured by photoemission yield spectroscopy (PYS). The VBM levels of the $Cu(In_{1-x}Ga_x)Se_2$, $Cu(In_{1-x}Ga_x)_3Se_5$ and $Cu(In_{1-x}Ga_x)_5Se_8$ solid solution systems did not change significantly with Ga content, x. The energy levels of the VBM of the $Cu(In,Ga)_3Se_5$ and $Cu(In,Ga)_5Se_8$ systems were deeper than that of $Cu(In,Ga)Se_2$ system. The energy levels of the conduction band minimum (CBM) of the $Cu(In_{1-x}Ga_x)Se_2$, $Cu(In_{1-x}Ga_x)_3Se_5$ and $Cu(In_{1-x}Ga_x)_5Se_8$ systems increased with the Ga content.

1. Introduction

Recently, we reported the crystallographic and optical properties of CuInSe₂, CuIn₃Se₅, and CuIn₅Se₈ phases in the Cu₂Se-In₂Se₃ system [1, 2]. The band-gap energies of Cu-poor Cu-In-Se samples, i.e., CuIn₃Se₅ (1.17 eV) and CuIn₅Se₈ (1.22-1.24 eV), were wider than that of chalcopyrite-type CuInSe₂ (0.99 eV). The valence band maximum (VBM) level of the Cu-poor Cu-In-Se samples significantly decreased with decreasing Cu/In ratio. In order to fabricate high efficiency CIGSe solar cells, we should control the band alignment of CdS/Cu(In,Ga)₃Se₅/Cu(In,Ga)Se₂ interface in the CIGSe solar cells [3]. However, the existence regions, optical properties and electronic structures of Cu(In,Ga)Se₂, Cu(In,Ga)₃Se₅ and Cu(In,Ga)₅Se₈ solid solution systems are still under discussion. The objective of this research is to clarify the crystallographic and optical properties, and band diagrams of Cu-deficient compounds, Cu(In,Ga)₃Se₅ and Cu(In,Ga)₅Se₈ and to compare the obtained results with those of Cu(In,Ga)Se₂.

2. Experimental Procedures

We synthesized Cu(In,Ga)Se₂ and Cu-deficient Cu(In,Ga)₃Se₅ and Cu(In,Ga)₅Se₈ samples (x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). Cu(In_{1-x}Ga_x)Se₂, Cu(In_{1-x}Ga_x)₃Se₅ and Cu(In_{1-x}Ga_x)₅Se₈ powder samples with $0.0 \le x \le 1.0$ were prepared by mixing the elemental Cu, In, Ga, and Se powders and sequential heating at 550 °C. The phases in the powders were identified by X-ray powder diffraction (XRD). The band-gap energies of the Cu-poor samples were determined from the diffuse reflec-

tance spectra of the ultraviolet-visible-near infrared spectroscopy. To understand the band diagram of the ZnO/CdS/CIGSe system, the ionization energies were measured by photoemission yield spectroscopy (PYS). Then, we determined the energy positions of the VBM and CBM of the Cu(In,Ga)Se₂, Cu(In,Ga)₃Se₅ and Cu(In,Ga)₅Se₈ samples from the vacuum level. Then, we discuss band alignment of ZnO/CdS/Cu(In,Ga)Se₂ solar cells with and without insertion of Cu-poor Cu(In,Ga)₃Se₅ layer.

3. Results and discussion

3.1 Crystal phases of (1-y)Cu₂Se-y(In_{1-x}Ga_x)₂Se₃ samples in the Cu₂Se-In₂Se₃-Ga₂Se₃ pseudo-ternary system

The phases in the $(1-y)Cu_2Se-y(In_{1-x}Ga_x)_2Se_3$ samples in Cu₂Se-In₂Se₃-Ga₂Se₃ pseudo-ternary system were identified by the XRD analysis. In our previous work [1, 2], we reported the crystal structures of CuInSe₂, CuIn₃Se₅, and CuIn₅Se₈ phases in the Cu-poor side of (1-y)Cu₂Se-yIn₂Se₃ $(0.5 \le y \le 1.0)$ pseudo-binary system. The tie line of the $(1-y)Cu_2Se-y(In_{1-x}Ga_x)_2Se_3$ samples with x=0.0 and 0.5 < y \leq 1.0 in Fig. 1 corresponds to our previous reported (1-y)Cu₂Se-yIn₂Se₃ system. As a result, we concluded that the crystal structure of the (1-y)Cu₂Se-yIn₂Se₃ sample changed from a chalcopyrite-type α -phase (y=0.5 and y=0.55) to a stannite-type β -phase (0.60 \leq y \leq 0.75) with increasing the content of In_2Se_3 , y. The samples with $0.80 \leq$ $y \le 0.95$ were a mixed phase of the tetragonal β -phase and hexagonal γ -phase. Our experimental results were in good agreement with the previously reported stable phases in the Cu₂Se–In₂Se₃ pseudo-binary phase diagram [4].

In the reported phase diagram of the Cu₂Se-Ga₂Se₃ system [5], hexagonal γ -phase does not exist, but there is a wide

region of stannite-type β -phase (y=0.72-0.86) in the Cu-poor side of CuGaSe₂. In present study, the crystal structure of the (1-y)Cu₂Se-yGa₂Se₃ sample changed from a chalcopyrite-type (0.50 \leq y \leq 0.60) to a stannite-type (0.75 \leq y \leq 0.85) with increasing the content of Ga₂Se₃, y. The samples with 0.65 \leq y \leq 0.70 were a mixture of the tetragonal chalcopyrite-type α -phase and tetragonal stannite-type β -phase. We did not observe a hexagonal γ -phase in the (1-y)Cu₂Se-yGa₂Se₃ system.

For the $(1-y)Cu_2Se-y(In_{1-x}Ga_x)_2Se_3$ samples, we observe that the single-phase region of the chalcopyrite-type $Cu(In_{1-x}Ga_x)Se_2$ solid solution (α -phase) increases with increasing Ga_2Se_3 content, x. Further, the single-phase region of stannite-type β -phase is also widened by replacement of In by Ga in the $(1-y)Cu_2Se-y(In_{1-x}Ga_x)_2Se_3$ samples (with increasing Ga_2Se_3 content, x). Hexagonal γ -phase is not observed in a high Ga_2Se_3 concentration (x > 0.5).

3.2 Band gap energies of Cu(In_{1-x}Ga_x)Se₂,

Cu(In1-xGax)3Se5 and Cu(In1-xGax)5Se8 systems

The band-gap energies (E_g s) of the Cu(In_{1-x}Ga_x)Se₂ (a), Cu(In_{1-x}Ga_x)₃Se₅ (b) and Cu(In_{1-x}Ga_x)₅Se₈ (c) samples with $0.0 \le x \le 1.0$ were estimated from the $[F(R)hv]^2$ vs. hv plot of the reflectance spectra. The E_g of CuInSe₂ (x = 0.0) in the tetragonal chalcopyrite phase is 0.99 eV. The E_g of the Cu(In_{1-x}Ga_x)Se₂ solid solution linearly increased from 0.99 eV of CuInSe₂ (x=0.0) to 1.65 eV of CuGaSe₂ (x=1.0) with increasing Ga content, x.

The E_g of 1.19 eV for CuIn₃Se₅ (x=0.0, y=0.75) with the tetragonal stannite structure is larger than that of chalcopyrite-type CuInSe₂ (0.99 eV) (x=0.0, y=0.50). The E_g of the Cu(In_{1-x}Ga_x)₃Se₅ solid solution linearly increased from 1.19 eV of CuIn₃Se₅ (x = 0.0) to 1.65 eV of CuGa₃Se₅ (x=1.0) with increasing Ga content, x. The E_g of the Cu(In,Ga)₅Se₈ solid solution linearly increases from 1.25 eV of CuIn₅Se₈ (x=0.0) to 1.91 eV of CuGa₅Se₈ (x=1.0) with increasing Ga content, x.

3.3 Band diagrams of Cu(In1-xGax)Se2, Cu(In1-xGax)3Se5 and Cu(In1-xGax)5Se8 systems

Figure 2 (a) shows the band alignment of $ZnO/CdS/Cu(In_{0.5}Ga_{0.5})Se_2$ structure. For CIGSe solar cells, excellent performance can be obtained when the CBM of

window layer is higher by 0-0.4eV (spike-type) than that of CIGSe. Therefore, if a high-Ga Cu(In_{1-x}Ga_x)Se₂ with e.g. x=0.5 is applied to an absorber layer of a CIGSe solar cell, the conduction band position of Cu(In_{0.5}Ga_{0.5})Se₂ is higher than that of CdS (-4.1 eV) buffer layer. The conduction band offset at the interface between CIGSe absorber and CdS buffer layers is negative. Unfavorable cliff-type conduction band offset will be formed for higher Ga content of Cu(In_{1-x}Ga_x)Se₂ absorber layer.

Then, we discuss the case of insertion of Cu-deficient layer of stannite-type $Cu(In_{0.5}Ga_{0.5})_3Se_5$ between Cu(In_{0.5}Ga_{0.5})Se₂ absorber layer and CdS buffer layer in the CIGSe solar cell. Figure 2 (b) shows the band alignment of $ZnO/CdS/Cu(In_{0.5}Ga_{0.5})_3Se_5/Cu(In_{0.5}Ga_{0.5})Se_2$ structure. As shown in Fig. 2, the band-gap energy of Cu(In_{0.5}Ga_{0.5})₃Se₅ increases, and the VBM becomes deeper compared with the $Cu(In_{0.5}Ga_{0.5})Se_2$. Therefore, positive valence band offset at interface between the Cu(In_{0.5}Ga_{0.5})₃Se₅ and Cu(In_{0.5}Ga_{0.5})Se₂ layers will be formed. The inserted Cu(In_{0.5}Ga_{0.5})₃Se₅ layer works as a hole blocking layer because the VBM of Cu deficient stannite-type Cu(In_{0.5}Ga_{0.5})₃Se₅ is deeper than that of chalcopyrite-type $Cu(In_{0.5}Ga_{0.5})Se_2$

Acknowledgments

This work was partially supported by NEDO under the Ministry of Economy, Trade and Industry (METI).

References

- T. Maeda, W. Gong, and T. Wada, Jpn. J. Appl. Phys. 55, 04ES15 (2016).
- [2] T. Maeda, W. Gong, and T. Wada, Current Opinion in Green and Sustainable Chemistry 4, 77 (2017).
- [3] T. Nishimura, Y. Hirai, Y. Kurokawa, and A. Yamada, Jpn. J. Appl. Phys. 54, 08KC08 (2015).
- [4] N. Kohara, S. Nishiawaki, T. Negami, and T. Wada, Jpn. J. Appl. Phys. 39, 6316 (2000).
- [5] R. Herberholz et al., Eur. Phys. J. Appl. Phys. 6, 131 (1999).

Fig. 2 Band alignment of ZnO/CdS/Cu(In_{0.5}Ga_{0.5})Se₂ structure with and without insertion of Cu-poor Cu(In_{0.5}Ga_{0.5})₃Se₅ layer.