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Abstract 

We propose a scheme for coherent control of a 

strongly-coupled quantum dot-cavity system based on ge-

ometric phases. We numerically show that vacuum Rabi 

oscillations can be robustly inverted by irradiating a 2π-

laser pulse. A cyclic evolution of a quantum dot exciton 

via a biexciton state is induced by the pulse and provides 

a quantized Berry phase to the system. The inversion op-

eration exhibits tolerance against errors in pulse area of 

the irradiated pulse. For example, a robust oscillation in-

version was found possible even under the presence of 

±20% deviations in pulse area from the optimal condition. 

For further applying the proposed scheme, we also show 

that the oscillations can be effectively limited by periodic 

irradiation of inverting pulses. Our approach using geo-

metric phases will be useful for implementing quantum 

devices based on robust and ultrafast coherent control of 

strongly-coupled quantum dot-cavity systems.   

 

1. Introduction 

The coherent interactions between quantum emitters and 

cavity photons in solid-state cavity quantum electrodynamics 

(CQED) systems play an important role for stable and scala-

ble quantum information processing(QIP). Among investi-

gated CQED systems, strongly-coupled quantum dot(QD)-

micro/nanocavity systems are one of the most promising plat-

forms due to their capability of operation at telecommunica-

tion wavelengths as well as of integration into quantum pho-

tonic integrated circuits. Although coherent control of the 

QD-cavity systems is required for various quantum de-

vices[1,2], earlier approaches predominantly relied on dy-

namic control of the quantum systems[3], which is in general 

sensitive to random fluctuations and systematic errors in con-

trol parameters. These drawbacks will be a main obstacle for 

the realization of highly-reliable and large-scale QIP systems.   

One of the alternative approaches to dynamic control is to 

use geometric phases. A geometric phase is determined only 

by geometrical properties of a quantum operation, providing 

it certain fault-tolerance[4]. So far, the effectiveness of the 

geometric operation has been demonstrated in various quan-

tum systems[5-7]. Similarly, in QD-cavity coupled systems, 

theoretical analyses for geometric phase gate operations using 

a dispersive QD-cavity interaction have been reported[8]. 

However, there has been no proposal of coherent control of 

strongly-coupled QD-cavity systems using geometric phase.  

In this study, we present a method for geometric-phase-

based coherent control of vacuum Rabi oscillations in a 

strongly-coupled QD-cavity system. We numerically demon-

strate robust inversion of the oscillations by inducing the tran-

sition between a QD exciton and a biexciton with a 2π rota-

tion pulse. This operation provides a geometric phase of π to 

the exciton state and hence inverts the phase of the oscillation. 

We found that this geometric operation is immune to errors 

in the irradiated pulse. For example, faithful oscillation inver-

sions are computed even under the presence of ± 20% devia-

tion in pulse area from the optimal condition. We also show 

that it is possible to effectively restrict the vacuum Rabi os-

cillations by periodically irradiating the flipping pulses.  

 

2. Model 

Figure 1 (a) shows a schematic of the investigated QD-cavity 

coupled system. We consider a three-level-system in the QD 

consisting of the grand state |G>, an exciton state |X> and 

biexciton state |XX> with a biexciton binding energy of χ = 

1500 μeV. The cavity is coupled to the QD system with a re-

alistic coupling strength of g=18 μeV[9], and is resonant with 

the |G>↔|X> transition. The incoherent processes including 

cavity photon leakage (κ = 1 μeV), QD’s spontaneous decay 

(γ = 0.13 μeV) and QD’s pure dephasing (γph = 2 μeV) are 

also considered. We employed a quantum master equation for 
calculating time evolutions of cavity photon number. 

 
Fig. 1 (a) Sketch of the investigated strongly-coupled QD-cavity 

system. (b) Bloch sphere representation of vacuum Rabi oscillations 

between an excitonic |G>↔|X> transition and a cavity photon. UP 

(LP) represents the upper (lower) polariton. (c) Geometric operation 

for the |X>↔|XX> transition. 2π rotation provides a geometric phase 

of π to |X> state and induces a |UP>↔|LP> transition in (b) (d) Time 

evolution of cavity photon population with (red line) and without 

(blue line) the 2π-pulse (green pulse) at the system being |UP>. Cor-

responding |G>↔|X> transition in (b) is plotted on the population. 
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Here, we describe the flow of coherent control of vacuum 

Rabi oscillations using geometric phase. In the first step, we 

trigger vacuum Rabi oscillations by a gaussian-shaped a laser 

π-pulse (pulse width = 5 ps) that is resonant with the 

|G>↔|X> transition (Fig.1 (b)) is irradiated to initiate vacuum 

Rabi oscillations. Then, for the geometric operation, we res-

onantly excite the |X>↔|XX> transition by a control pulse 

with a pulse area of θ = 2π. After a cyclic evolution of the 

exciton between |X>↔|XX> transition in the Bloch sphere 

(Fig. 1(c)), |X> state acquires a geometric phase of π, which 

corresponds to a phase flip from |X> to -|X>. This phase 

change of |X> causes a direct transition from the upper polar-

iton (UP) and lower polariton (LP) (Fig.1(b)). Consequently, 

when we apply the 2π-pulse when the system is at |UP> state 

(Fig. 1(d)), the vacuum Rabi oscillation can be inverted due 

to the transition from |UP> to |LP>.  

 

3. Numerical Results 

Figures 2 (a)-(d) show calculated time evolutions of cav-

ity photon population when the control 2π pulse is applied at 

four different states of the oscillations (|LP>, |X>, |UP> and 

|G>, respectively). As we expected, the Rabi oscillations are 

faithfully flipped just after the arrival of the 2π-control pulse 

when the system is either at the |LP> or |UP> state (Fig. 2 (a) 

and (c)). On the other hand, for the pulse irradiation at the 

system being |X> or |G> state (Fig. 2 (b) and (d)), the oscilla-
tions are unaffected, because the phase flip of |X> or |G> does 

not affect the vacuum Rabi oscillation dynamics. Note that 

we also confirmed that it is difficult to implement the same 

flipping action on the oscillations by the dynamic control with 

a resonant π-pulse to the G-X transition. 

In order to investigate the robustness of the geometric op-

eration for the oscillation inversion, we examined various 

pulse area of the control pulse (θ), with fixing the pulse width 

to be 5 ps. Figures 2 (e)-(g) show examples when varying θ 

from 0.8 to 1.2θ0, where θ0 is the optimum pulse area of 2π. 

Faithful oscillation inversions can be seen even with ±20% 

errors in pulse areas. With further increasing the error in θ, 

damping and time-delay of oscillations gradually appear.  

 
Fig. 2 Calculated cavity photon populations with a control pulse ir-

radiated respectively at the system being (a) |UP>, (b) |X>, (c) |LP> 

and (d) |G> and (e)-(h) with unoptimized control pulses of θ0/2π = 

0.8, 0.9, 1.0 and 1.2. Blue solid lines are results without the control 

pulses. Yellow pulse is the π-pulse triggering the oscillations. 

These results suggest that our scheme based on geometric 

phases will be advantageous for implementing robust control 

of the vacuum Rabi oscillations under the existence of fluctu-

ations in control parameters. 

Finally, we show that the inversion operation using geo-

metric phases can be used for a more sophisticated control of 

vacuum Rabi oscillations. Figures 3(a) and (b) exhibit the cal-

culated oscillations with four control 2π-pulses periodically 

irradiated when the system is in |UP> or |LP> state during the 

oscillations. The vacuum Rabi oscillation is limited in the up-

per (Fig. 3(a)) or lower (Fig. 3(b)) half of the oscillation. 

From this result, we expect that the multiple reversing-pulse 

operation can also be a powerful scheme for coherent control 

of the QD-cavity systems.   

 
Fig. 3 Calculated vacuum Rabi oscillations when the four control 

pulses (green pulses) are periodically applied at the system being (a) 

|LP> and (b) |UP> states (red lines). Blue solid lines are the oscilla-

tions without the control pulses. 

 

4. Conclusions 

   We proposed a simple and fault-tolerant scheme for co-

herent control of vacuum Rabi oscillations in a strongly-cou-

pled QD-cavity system by using geometric phase. The oscil-

lations can be robustly flipped by applying a 2π rotation pulse 

to an QD exciton. We found that the faithful oscillation inver-

sion can be implemented even with ±20% errors in pulse area 

from the optimal condition. We also showed that the periodic 

irradiation of the reversing-pulses enables effectively limit 

the vacuum Rabi oscillations. Our approach will be useful for 

implementing robust and ultrafast quantum operation on 

strongly-coupled QD-cavity systems. 
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