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Abstract 

Graphene field effect transistor (G-FET) biosensors 

exhibit high sensitivity due to their high electron/hole mo-

bilities.  However, G-FET biosensors often undergo base-

line drift as a result of their instability under aqueous en-

vironments, which makes it difficult to analyze the sensor 

response against target molecules.  Here, we present a 

computational approach to build state-space models 

(SSMs) for time-series data of G-FET biosensors, which 

can separate the response against target molecules from 

the drift.  The drain current (IDS) was continuously meas-

ured, while sensing the influenza virus (H1N1) as target 

molecules. The obtained time-series data including IDS 

change induced by the virus and the drift was modeled by 

the proposed SSMs. The parameters were estimated by 

using Markov chain Monte Carlo (MCMC) meth-

ods.  The models were evaluated by using widely applica-

ble Bayesian information criterion (WBIC).  Our models 

fit the time-series data of the G-FET biosensors well, and 

extracted the sensor response to target molecules from the 

baseline-drift data.  This study would enable one to ac-

curately analyze the sensor response. 

 

1. Introduction 

Graphene, a two-dimensional (2D) sheet of hexagonally 

arranged carbon atoms, offers an ideal sensing platform ow-

ing to its high electron/hole mobilities and 2D nature.  In-

deed, there have been reports on Graphene field effect tran-

sistor (G-FET) biosensors showing detections of ions [1], bi-

omolecules [2], and others.  However, G-FET biosensors 

exhibit baseline drift [3], which makes it difficult to estimate 

concentration of target molecules properly.  Here, we pre-

sented state-space models (SSMs) to describe time-series data 

of G-FET biosensors.  SSMs have been widely used in time-

series analysis, for example gravimetric chemical sensors [4], 

to understand the systems that can generate the time-series 

data.  Our proposed SSMs demonstrated that the time-series 

data of G-FET biosensors was separated into the sensor re-

sponse to target molecules and the drifted baseline.  

 

2. Results and Discussions 

CVD graphene films were used for making G-FETs.  The 

G-FETs were functionalized with sialoglycans as described 

elsewhere [2]. The sialoglycans can specifically bind influ-

enza virus, and then transconductance of G-FET will change 

due to the surface charge of the virus (Fig.1). 

 

 A fixed top-gate voltage (VGS = - 0.35 V) was applied in 

Dulbecco's phosphate-buffered saline (D-PBS) solution (150 

mM, pH 7.4) via a Ag/AgCl reference electrode, and the drain 

current (IDS) was measured with the bias voltage (VDS) of 0.1 

V.  Influenza virus (H1N1) was intermittently piped onto 

the sensor, with changing the virus concentration ranging 

from 0 to 256 HAU in D-PBS solution.  In the dynamic re-

sponse of the sensor, IDS changed correspondingly when the 

virus concentration changed (Fig. 2(a) (b)).  In addition, the 

dynamic response also showed apparent baseline drift as IDS 

sequentially changed even without virus. 

 

The obtained time-series data was modeled as follows (eqs. 

(1) - (5)). 

 

𝐼𝐷𝑆,𝑡 = 𝑥𝑡 + 𝑞𝑡 + 𝜀𝑡                                          (1) 

𝑞𝑡 = ∑ ∆𝑞𝑖
11
𝑖=1                                    (2) 

∆𝑞𝑖 = {
0                                                                   (𝑡 < 𝑡𝑖)

(𝑄𝑖 − 𝑄𝑖−1) {1 − 𝑒𝑥𝑝 (−
𝑡 − 𝑡𝑖

𝜏𝑖
⁄ )}   (𝑡 ≥ 𝑡𝑖)

  (3) 
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Fig. 1 Schematic of sialoglycan-functionalized G-FET. 
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𝑄𝑖 =
𝑎𝑐𝑖

𝐾𝐷+𝑐𝑖
                                       (4) 

𝑥𝑡 − 𝑥𝑡−1 = 𝑥𝑡−1 − 𝑥𝑡−2 + 𝜔𝑡                       (5) 

 

Eq. (1), which is called the observation equation, denotes that 

IDS is summation of the baseline (xt), regression component 

regarding virus (qt), and the observation noise (εt ~ N (0, σε)). 

The regression component (qt) is described according to two 

ideas: (i) qt is cumulative sum of signal changes at each virus 

piped point (Δqi), where i indicates virus piped indices (eq. 

(2)), and (ii) each Δqi follows exponential decay after the vi-

rus piped, where ti corresponds to the time of virus piped (eq. 

(3)), and finally Δqi reaches to plateau following Langmuir 

adsorption model as a function of the concentration (ci) with 

coefficients of dissociation constant (KD) and a (eq. (4)).  Eq. 

(5), which is called the state equation, assumes that the base-

line (xt) follows a quadratic trend with the system noise (ωt ~ 

N (0, σω)).  The parameters were estimated using Markov 

chain Monte Carlo (MCMC) methods implemented in Python 

and Stan’s probabilistic programming languages.  After the 

estimation, Rhat, which is an indicator of MCMC convergence 

[5], was smaller than 1.1 for all parameters, indicating that 

the parameters were properly estimated in the model.  Ac-

cording to the model and the estimated parameters, the time-

series data in Fig. 2(a) was clearly separated into the signal 

related to the virus (qt, Fig. 2(c)) and the baseline (Fig. 

2(d)).  The parameters of KD in eq. (4), and τi in eq. (3) were 

estimated to be 155 [HAU] (95% Bayesian credible interval: 

68 - 501) and 3.1 [min] (95% Bayesian credible interval: 1.81 

- 4.6) in this experiment, respectively. 

 

Finally, we compared the developed model through eqs. 

(1)-(5) (Langmuir model with exponential decay and a quad-

ratic trend; model 1) with two simplified models: Langmuir 

model with a linear baseline (model 2), and Langmuir model 

with a quadratic trend (model 3).  Widely applicable Bayes-

ian information criterion (WBIC), which is an information 

criteria [6], was calculated for three models (Table I).  The 

list shows that WBIC for model 1, is the lowest value among 

the candidates, indicating that model 1 is the best one to de-

scribe the obtained G-FET dynamic response. 

 

Table I Comparison of WBIC for three models 

 

          model 1            model 2          model 3 

WBIC       -860              -819          -846 

 

 

3. Conclusions 

We developed the SSM to describe the dynamic re-

sponse of G-FET biosensors against influenza virus.  The pa-

rameter estimation was conducted by using MCMC methods. 

The dynamic response fitted well to the model, and was sep-

arated into the virus response and the baseline drift.  The 

model proposed here enables one to accurately analyze the 

sensor response. 
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Fig. 2 (a) Dynamic response of G-FET biosensors.  (b) The corre-

sponding concentration of influenza virus on the G-FET.  (c)(d) The 

sensor response regarding the virus (c) and the baseline (d) extracted 

from (a) by using the SSM.  The shades in (c) (d) indicate 95% 

Bayesian credible interval. 

 

 

- 176 -


