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Abstract 
Quantum annealing (QA) is a way to tackle combina-

torial optimization problems by using Ising type interac-
tion. Most of the previous demonstration of the QA has 
been done with superconducting flux qubits (FQ). The 
FQs used in these demonstrations has a short coherence 
time such as tens of nanoseconds. To exploit the quantum 
advantage, it is beneficial to use qubits with better coher-
ence time. Here, we propose the QA with capacitive-
shunted flux qubits (CSFQs) that has a few orders of mag-
nitude better coherence time than that of the FQ used in 
the QA. While it is difficult to perform the conventional 
QA with the CSFQs due to the form and strength of the 
interaction between them, we theoretically show that the 
spin-lock based QA can be implemented by using the 
CSFQs even with the current technology. Our numerical 
results also support the feasibility of our proposal. 
 
1. Introduction 

Quantum annealing (QA) is a promising way to solve 
combinatorial optimization problems [1]. In the optimization 
problems, we need to minimize a cost function, and some of 
the optimization problems can be mapped into a task to find 
a ground state of the Ising Hamiltonian [2]. QA is designed 
to find such a ground state of the Ising Hamiltonian by using 
adiabatic dynamics [3].  

Most of the previous demonstrations of the QA has been 
done with the superconducting flux qubits (FQ) [4]. Since the 
FQ is an artificial atom, there are many degrees of design 
freedom. We can control the properties of the qubit by chang-
ing the circuit design before the fabrication. Also, even after 
the fabrication, control line coupled with each qubit can 
change the qubit frequency and qubit-qubit coupling strength. 
These are prerequisite for the QA. On the other hand, the FQ 
used for the QA has a short coherence time such as nano sec-
onds [5]. To exploit the quantum advantages, it should be bet-
ter to use the qubits with better coherence time. 

Recently, a capacitively-shunted flux qubit (CSFQ) was 
demonstrated. The CSFQ has a coherence time of an order of 
tens of micro seconds at near the optimal point [6], and this is 
a few orders of magnitude larger than that of the FQs used in 
the previous QA. So the CSFQ is considered as a promising 
candidate to realize quantum information processing. 

However, in order to use the CSFQ for the QA, there are 
two main problems to overcome. Firstly, the CSFQ has a 
smaller persistent current such as tens of nA [6] while the 
standard FQ has a persistent current of a few μA [4]. This 
results in a few order of magnitude smaller coupling strength 

between qubits. To solve practically useful problems with the 
QA, the coupling strength of the qubits should be comparable 
with the qubit frequency, but it would be difficult to achieve 
such a strong coupling in the CSFQ. Secondly, near the opti-
mal point where the coherence time is maximized, the CSFQ 
has not only Ising interaction but also flip-flop interaction 
with another CSQS [6]. The QA exploits the Ising interaction 
to solve the problems, and the residual flip flop type interac-
tion could induce a fatal error to find the solutions. 

In this paper, we propose to implement the spinlock-based 
QA with the CSFQs. The spin lock technique is designed to 
keep a state of |+⟩ (an eigenstate of σ𝑥𝑥) in a rotating frame. 
More specifically, after we prepare a state of |+⟩ by per-
forming a π/2 pulse, we continuously drive the qubit along 
x direction, which keeps the state in |+⟩ that is an eigenstate 
of the Hamiltonian in the rotating frame. This technique has 
been widely used in the fields of magnetic resonance [7]. Im-
portantly, when the qubit is driven by the AC fields, the ef-
fective qubit frequency becomes the detuning between the 
qubit frequency and driving field frequency. Moreover, a 
large detuning between the bare frequencies of the qubits can 
be set during the spin lock on every qubit, and this detuning 
effectively suppresses the flip-flop interaction between the 
qubits. Although such a spin-lock based QA has been imple-
mented with NMR [8,9], a practical benefit is unclear because 
it is difficult to increase the number of the qubits in NMR. On 
the other hand, we propose to implement the QA with CSFQs 
that are expected to have a scalability. 

We theoretically investigate the performance of the spin-
lock based QA with the CSFQs. Especially, the spin-lock 
based QA becomes equivalent to the conventional QA only if 
the rotating wave approximation (RWA) is valid. When we 
drive the qubits with strong driving fields, the RWA can be 
violated when the qubit bare frequency becomes close to the 
Rabi frequency. In NMR, the frequency of the qubit is 6 or-
ders of magnitude larger than the other typical frequencies [8], 
the RWA is quite accurate. However, the frequency of the 
CSFQ is just a few orders of magnitude larger than the other 
frequencies. So careful assessment of the error accumulation 
is required to investigate the practicality of the spin-lock 
based QA with CSFQs.   

 
2. The standard QA with DC transverse magnetic fields 

Before we explain our QA by using the system with the 
Heisenberg interaction, let us quickly review the standard QA 
with applying DC transverse magnetic fields [1]. The Hamil-
tonian in the QA is described as follows. 
𝐻𝐻QA = 𝑒𝑒−𝛾𝛾2𝑡𝑡2𝐻𝐻𝑇𝑇𝑇𝑇 + (1 − 𝑒𝑒−𝛾𝛾2𝑡𝑡2)𝐻𝐻Ising                     (1) 
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where γ denotes the typical time scale to reduce the trans-
verse fields, ℎ𝑖𝑖  denotes the resonant frequency of the i-th 
qubit, Jii’ denotes the coupling strength between the qubits, 
and Λ  denotes the amplitude of the transverse magnetic 
fields. For the QA, we prepare a state of |+⟩ for all qubits, 
and we reduce the amplitude of the transverse magnetic fields 
with a time scale of γ while we adiabatically increase the 
amplitude of HIsing with the same time scale. If γ is much 
smaller than the energy gap between the ground state and first 
excited state of HQA for all t, we can obtain a ground state of 
the Ising Hamiltonian. 
 
3. QA with spin lock technique 

We explain the details of the QA with the spin lock tech-
nique [12,13]. Firstly, we prepare a spin down state (an eigen-
state of σ𝑧𝑧) for every qubit. Secondly, we apply a global π/2 
pulse to prepare a state of |+⟩. Thirdly, we continuously 
drive the qubit along x direction, and gradually reduces 
the amplitude of the transverse driving field while we gradu-
ally turn on the Ising Hamiltonian. Finally, we readout the 
qubits. The third step in the scheme is governed by the 
unitary evolution based on the following Hamiltonian 
𝐻𝐻 = 𝐻𝐻0 + 𝑒𝑒−𝛾𝛾2𝑡𝑡2𝐻𝐻𝐷𝐷 + (1 − 𝑒𝑒−𝛾𝛾2𝑡𝑡2)(𝐻𝐻Ising + 𝐻𝐻xy)         (4) 
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where (𝜔𝜔 + δω𝑖𝑖) denotes a bare frequency of the i-th qubit 
and λ denotes the Rabi frequency of the driving fields. Im-
portantly, by taking a rotating wave approximation (RWA) 
that becomes valid in the limit of a large qubit frequency, the 
Hamiltonian in the Eq (4) becomes equivalent to that in the 
Eq. (1) by setting λ = Λ.  

5. Possible implementation of the practical QA with 
the spin-lock technique 

We evaluate the potential errors during the spin-lock 
based QA due to the violation of the RWA by using numerical 
simulations. We solve a time-dependent Schrödinger equa-
tion with Hamiltonian (4) from t = 0 to t = T where the ini-
tial state of every qubit is |+⟩. We consider a ferromagnetic 
one-dimensional Ising model with free boundary condition. 
More specifically, we consider ℎ𝑗𝑗 = ℎ > 0 and 𝐽𝐽𝑖𝑖,𝑖𝑖+1 = 𝐽𝐽 >

0 (i=1,2, ⋯ , L-1) with the nearest neighbor interaction. In 
this case, the ground state of the Ising Hamiltonian is an all 
up state of |11⋯ 1⟩. To quantify the accuracy to find the 
ground state of the Ising Hamiltonian, we define a fidelity as 
F(t) = |⟨11⋯ 1|ϕ(t)⟩|2 where |ϕ(t)⟩ denotes a solution of 
the Schrödinger equation at a time t. We plot an infidelity (1-
F) against time with feasible parameters of the CSFQs in the 
Fig. 1. The fidelity increases as the qubit frequency increases. 
This shows that the larger frequency of the qubit makes the 
RWA more valid, which reduces the error in the QA.  

 
Fig. 1 Infidelity plotted against time. Here, we set parameters as 
λ/2π=1 GHz, h/2π=0.03 GHz, γ = 0.01 GHz, J/2π=0.05, T=500 
(ns), ω/2π=3.6, 4.8, 6.0 GHz, δω1/2π=0, δω2/2π=3.7, δω3/2π=-0.5,  
L=4, and δω4/2π=3, which are typical in the SCFQ [10].  
 
5. Conclusions 
   In conclusion, we propose to implement the QA with 
CSFQs. Although it is difficult to perform the conventional 
QA by using the CSFQs because of the weak coupling 
strength and residual flip-flop interactions, we show that a use 
of the spin-lock based QA can overcome these problems. Our 
numerical simulations show that the spin-lock based QA can 
be implemented even with the current technology. 
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