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   We discuss the effect of photo-recycling effect on the 
external quantum efficiency of radiation (EQE) in semi-
conductors, considering spatial carrier dynamics. We 
calculate carrier distribution and EQE for both w/ and 
w/o photo-recycling term, and clarify the effect of pho-
to-recycling. We find that the photo-recycling keep high 
concentration of photo-excited carrier in the sample and 
enhances the EQE beyond the light extraction efficiency. 
However, in strong photo-recycling condition, the EQE 
enhancement is suppressed by the effective increase in 
the carrier diffusion length. Our analysis for the pho-
to-recycling effect paves the way for accurate evaluation 
of crystal quality of semiconductors from the EQE. 
 
1. Introduction  
  Photoluminescence (PL) measurement is a powerful tool 
for the evaluation of crystal quality of semiconductor sam-
ples. Recently, we have firstly succeeded in quantifying the 
absolute value of the EQE of a GaN wafer by utilizing the 
omnidirectional photoluminescence (ODPL) spectroscopy, 
and estimated the IQE from the absolute EQE [1-2]. The 
values of EQE and IQE have direct relation with the con-
centration of the non-radiative recombination centers 
(NRCs) such as VGaVN divacancies in GaN-based materials 
[3-4]. Therefore the measurement of the quantum effi-
ciencies utilizing ODPL spectroscopy has attracted much 
attention as a promising method to quantify the NRC con-
centration. However, in the interpretation of the EQE, the 
effect of “photo-recycling” is still a matter of debate. 
  The EQE is given by the ratio of the PL intensity to the 
absorbed pumping light intensity. When the radiative re-
combination becomes dominant because of the low NRC 
concentration, the photo-recycling phenomenon, that is, the 

self-absorption and the re-emission of photon, plays a sig-
nificant role in the PL intensity [1,5]. This photo-recycling 
strongly depends on the carrier distribution in the sample. 
However, the relation between the photo-recycling effect 
and the spatial carrier dynamics has not been investigated 
well. In this work, we numerically calculate the carrier dis-
tribution and the PL intensity in semiconductor samples 
using the drift-diffusion based transport model, and discuss 
the photo-recycling effect on the EQE. 
2. Model and Method 
  For simplifying the equation for carrier dynamics, we 
consider a bulk sample whose area of photo irradiation is 
enough large so that the carrier distribution is almost uni-
form along the plane parallel to the sample surface (y-z 
plane). In addition, we assume an N-type sample whose do-
pant concentration N0 is larger than the NRC concentration 
Nt. In a weak photo pumping condition, the continuity equa-
tion for hole carrier along the thickness direction (x axis) is 
reduced to [6], 

Here, p(x) is the hole concentration, Dh is the hole diffusion 
constant, Ch is the hole capture coefficient by NRC, B is the 
spontaneous emission coefficient, n0 = N0 - Nt is the uniform 
electron concentration in weak photo pumping condition, α 
is the absorption coefficient of light, Ipump is the intensity of 
CW pumping light , Γ(θ,nr) is the Fresnel reflection coeffi-
cient depending on the refractive index nr, L is the sample 
thickness. Gself indicates the generation rate corresponding to 
the revival of photo-excited carriers by the self-absorption 

Dh
�2p(x)

�x2
= ��Ipumpe��x + NtChp(x) + Rrad(x) � Rself(x),

�(�, nr)
�
e

��|x+x�|
cos � + e

��|2L�x�x�|
cos �

��
d�dx�. (1)

Rrad(x) = Bn0p(x), Gself(x) =
�Bn0

2

� L

0

� �
2

0
p(x�) tan �

�
e

��|x�x�|
cos � +

(b)��Parameter� Value �
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N-type Dopant concentration: N 0 �
NRC concentration: N t �

Absorption coefficient: α�

�Refractive index: nr�

Pumping light intensity: Ipump�
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Table 1: Caculation parameters for bulk 
semiconductor sample.�
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Figure 1: (a) Calculated distribution of hole concentration w/ photo-recycling 
effect   for  B = 10-11,10-8,  10-7  cm-3s-1.  (b)  Calculated  distribution  of  hole 
concentration w/o photo-recycling effect  for B = 10-11,10-8, 10-7 cm-3s-1.�
�
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process. In this paper, for clarifying the effect of pho-
to-recycling, we calculate hole distributions for the cases w/ 
and w/o Gself term (hereafter we will refer w/ and w/o recy-
cling cases). EQE is calculated as the ratio of the PL inten-
sity IPL to Ipump. The calculation parameters comparable to 
GaN crystals [1-4] are listed on Table 1. We consider low 
NRC concentration condition and change the emission coef-
ficient B from 10-12 to 10-7 cm-3s-1 in order to discuss the 
photo-recycling effect. The parameter range of B corre-
sponds to the value of IQE from 0.0141 to 0.999. 
3. Results 
  Figures 1 (a) and (b) shows the calculated hole distribu-
tion near the photo irradiated surface (x = 0) w/ and w/o 
recycling for B=10-11, 10-8 and 10-7 cm-3s-1, respectively. 
When the radiative recombination is weak (B =10-11 cm-3s-1), 
the distributions of both cases are almost same. However, 
the difference between them becomes remarkable for large B. 
The hole concentration rapidly decreases, and the carrier 
diffusion length λ becomes small with increase in B for w/o 
recycling case. On the other hand, the decrease of the hole 
concentration is small, and λ becomes large with increase in 
B for w/ recycling case. For better understanding of the 
photo-recycling effect, we show the distribution of Rrad and 
Gself for w/ recycling case in Fig. 2(a). As shown in this fig-
ure, the values of Rrad and Gself are close each other. This 
means that a large part of the photons emitted by the radia-
tive recombination is absorbed in the sample, and it revives 
photo-excited carriers. Hence, the concentration of pho-
to-exited carriers is kept in w/ recycling case. Figure 2 (b) 
shows a net radiative recombination rate Rnet  = Rrad - Gself in 
w/ recycling case. The solid and dashed lines indicate posi-
tive and negative values, respectively. In the surface region, 
the radiative recombination gets over the self-absorption, 
and intense emission occurs. Interestingly, Rnet becomes 
negative in sample inside region. In the sample inside, Gself 
surpasses Rrad because of the absorption of intense lumines-
cence from the surface region. This results in the effective 
increase of the carrier diffusion length λ [5,6]. 
  Finally, we show the calculated EQE as a function of B 
for both w/ and w/o recycling cases. The solid line indicates 
the theoretical curve for the EQE derived in our recent work 

[6],  

 
Here, the surface recombination rate is ignored, and ηopt (nr) 
is the light extraction efficiency obeying Fresnel’s law, ηself 
(α,λ) is the light extraction efficiency which gives the frac-
tion of the luminescence reaching to the sample surface 
overcoming the self-absorption process. The calculated EQE 
for w/ recycling case agrees well with the theoretical curve. 
The difference between w/ and w/o recycling cases becomes 
significant as B increases. As shown in Fig. 1 (b), the con-
centration of photo-excited carrier is kept by the pho-
to-recycling effect in w/ recycling case, and the PL intensity 
keep increasing with increase in B. Meanwhile, in w/o recy-
cling case, photo-excited carrier drastically decreases with 
increase in B because of the strong radiative recombination 
without photo-recycling, and the EQE saturates to the value 
of the extraction efficiency. Of particular note that the in-
crease of EQE in w/ recycling case is suppressed for large B 
(B=10-8-10-7 cm-3s-1). The strong photo-recycling effect ef-
fectively increases the diffusion constant of the carrier, and 
the strong diffusion decreases the carrier concentration near 
the surface (compare the distributions for B=10-11 and 
B=10-7 in Fig.1 (a)). As a result, the extraction efficiency 
originating from the self-absorption ηself decreases, and the 
increase of the EQE is suppressed. 
4. Conclusion 
  In this paper, we theoretically investigate the pho-
to-recycling effect on EQE based on drift-diffusion based 
carrier transport model. The photo-recycling effect keep 
high concentration of photo-excited carrier and enables in-
tense PL from the sample. Meanwhile, the strong pho-
to-recycling promote carrier diffusion, and it suppresses the 
EQE increase. 
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Figure 2: (a) Calculated distributions of Rrad and Gself w/ photo-recycling effect  for B 
= 10-11,10-8,  10-7 cm-3s-1.  (b) Calculated distribution of net radiative recombination 
Rnet = Rrad – Gself for B = 10-11,10-8, 10-7 cm-3s-1. The solid and dotted lines indicates 
positive and negative values, respectively.�
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Figure 3: Calculated EQE as a function of B  w/-
recycling  (filled  circle)  and  w/o  recycling  (open 
circle). The red dotted line indicates the theoretical  
EQE curve given by Eq. (2). �
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