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Abstract 

A field-effect transistor (FET) using c-axis-aligned 

crystalline indium-gallium-zinc oxide (CAAC-IGZO) in 

a channel layer (CAAC-IGZO FET) exhibits an ex-

tremely low off-leakage current and undergoes no 

change in mobility even in high-temperature environ-

ments. We fabricated a CAAC-IGZO FET with a trench 

gate self-aligned structure, and obtained small charac-

teristics variations and high reliability. The FET with 

channel width/channel length  60/60 nm achieved a 

variation in shift voltage   64 mV, and 100 mV or less 

even after 490 h of a positive gate bias temperature test 

as a reliability test. 

 

1. Introduction 

Large-scale integration (LSI) for artificial intelligence, 

memory, central processing units, and field-programmable 

gate arrays has been actively researched and developed, but 

these devices have a problem of high power consumption. 

Silicon (Si) has been employed for the LSI to date; in recent 

years, LSI with a field-effect transistor using c-axis-aligned 

crystalline indium-gallium-zinc oxide (CAAC-IGZO FET) 

has been increasingly reported[1–4]. The CAAC-IGZO FET 

has a unique feature of a low off-leakage current[5] and no 

change in mobility[6] even in high-temperature environ-

ments. Thus, aiming for low-power LSI, miniaturization of 

CAAC-IGZO FETs has been advanced. For LSI applications, 

the control of characteristics variations and reliability is re-

quired in addition to the miniaturization. 

We fabricated a CAAC-IGZO FET employing a trench 

gate self-aligned (TGSA) structure, which is advantageous 

in miniaturization[7, 8]. This study reports the results of 

measuring the characteristics variations and reliability of the 

CAAC-IGZO FET with a channel width (W)/a channel 

length (L)  60/60 nm. 

 

2. Device Structure and Process Flow 

Figure 1 shows a conceptual diagram and cross-sectional 

scanning transmission electron microscope (STEM) images 

of our fabricated FET with a TGSA structure. Figure 2 

shows a process flow for fabricating the IGZO FET with a 

TGSA structure. The FET includes a back gate electrode 

(TiN＼W) that allows controlling the shift voltage (Vsh)[9]. 

Separation of source and drain electrodes and formation of a 

buried gate (TiN＼W) region are made in a self-aligned 

manner. The FET has a size of W/L  60/60 nm. The equiv-

alent oxide thickness (EOT) of a gate insulating film is 5.6 

nm. As shown in the cross-sectional STEM image in the W 

direction of Fig. 1(b), sides of the CAAC-IGZO are covered 

by a gate electrode, so that the FET is controlled by the gate 

electrode more effectively. Figure 3 shows the crystallinity 

in a channel region of the FET. Its clear layered structure 

indicates that the channel region surely includes 

CAAC-IGZO. 

The IGZO FET can be stacked on a substrate provided 

with a Si metal oxide semiconductor FET. In addition, when 

IGZO FETs are stacked on each other, a space-saving device 

with a high density is achieved. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 (a) Schematic diagram of TGSA structure and (b) 

Cross-sectional STEM images (left: L-direction, right: 

W-direction). 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

(a) 

(b) 

 Back gate electrode formation and 

gate insulator deposition 
 IGZO deposition and island for-

mation 
 SiOx deposition and planarization 

by CMP 
 S/D electrode formation in a 

self-aligned manner 
 Top gate insulator deposition 
 Top gate electrode formation 
 Passivation and S/D electrode pad 

formation 

Process flow for fabricating Fig.2 

IGZO FET with TGSA structure FET. 

CAAC-IGZO 

Back Gate Insulator 

Fig.3 Cross-sectional  

TEM image of  

CAAC-IGZO 
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3. Characteristics of CAAC-IGZO FET 

Figure 4 shows drain current-gate voltage (Id-Vg) curves 

of our fabricated TGSA CAAC-IGZO FETs, and the normal 

probability distribution of the values is shown in Fig. 5. The 

Vsh is defined as Vg at an Id of 10
12

 A in the Id-Vg curve with 

Vd  1.2 V. A variation  in Vsh of 215 devices each of 

which is designed to have W/L  60/60 nm is 64 mV. 

Since the Vsh of the CAAC-IGZO FET can be controlled 

with the back gate electrode, back gate voltage (Vbg) de-

pendence of Vsh was measured. Figure 6 shows that Vsh can 

be shifted positively to 0.75 V when Vbg  6 V. This is 

probably a noticeable effect produced when the 

CAAC-IGZO FET having a low off-leakage current is em-

ployed in LSI. 

Next, a positive gate bias temperature test (PGBT) was 

performed on the same FETs and the amount of change in 

Vsh and a change in subthreshold slope (S.S.) over time were 

measured. In the PGBT, a stress of Vg  3.63 V was applied 

at 150C and the voltages of the source, the drain, and the 

back gate were each set to 0 V. As shown in the results in 

Fig. 7, the amounts of changes in Vsh and S.S. were within 

100 mV and 10 mV/dec., respectively, after 490 h. 

 

4. Conclusion 

Minute FETs using CAAC-IGZO in channel layers were 

fabricated and their initial characteristics and reliability were 

evaluated. In the Id-Vg curves of 215 FETs each with W/L  

60/60 nm, a variation in Vsh of 64 mV was achieved. In ad-

dition, the PGBT reliability test (at 150C and Vg  3.63 V) 

revealed that the amount of change in Vsh did not exceed 100 

mV after 490 h. These results indicate that the TGSA 

CAAC-IGZO FET is applicable to actual operation of LSI. 
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Fig. 4 CAAC-IGZO FET Id-Vg curves 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 CAAC-IGZO FET performance 

・TEG: W/L  60/60 nm (designed value) n  215 

(a) Normal probability plot Vsh at Id  10
12

 A 

(b) Normal probability plot Id at Vg  3.3 V and Vd  1.2 V  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Vbg dependence of Vsh 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 PGBT characteristics 

Test conditions: Vg  3.63 V, Vd  Vs  Vbg  0 V 150C 

(a) Vsh, (b) S.S. at Vd = 1.2 V 

CAAC-IGZO FET 

W/L  60/60 nm (designed value) 

EOT  5.6 nm 

temp. R.T. 
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