Interface dipole modulation in ALD HfO₂/SiO₂ multi-stack MOS structures

Shutaro Asanuma^{1,*}, Kyoko Sumita¹, Yusuke Miyaguchi², Kazumasa Horita², Takehito Jimbo², Kazuya Saito², and Noriyuki Miyata¹

¹Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST),

Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan

*Phone: +81-29-861-2986 E-mail: shutaro-asanuma@aist.go.jp

²Institute of Semiconductor & Electronics Technologies, ULVAC Inc.

1220-1 Suyama, Susono, 410-1231, Japan

Phone: +81-55-998-1555

Abstract

We first demonstrated interfacial dipole modulation (IDM) in HfO₂/SiO₂ stack structure fabricated by atomic layer deposition (ALD). Electrical and physical characteristics of the ALD-IDM structures are presented in this paper. We also found that the ALD temperature largely affects the IDM operation.

1. Introduction

A new memory operation based on HfO_2/SiO_2 gate stack which we call interface dipole modulation (IDM) has been proposed [1]. This potential switching is considered to be originated from electric-field-induced atomic displacement around the interface 1-monolayer (ML) TiO₂, and this memory device offers advantages as a low-temperature process of gate stack structure, compared with the ferroelectric HfO_2 memory [2]. However, in previous work, a high-vacuum EB-evaporation method unsuitable for mass production has been used to deposit oxide layers. In this study, we examined the applicability of atomic layer deposition (ALD) method to fabricate HfO_2/SiO_2 IDM MOS structure.

2. Experimental

Deposition of HfO₂, TiO₂, and SiO₂ layers was performed using metal-organic precursors and O₂ plasma at 150-350°C in the same ALD reactor. The HfO₂/TiO₂/SiO₂ multi-stack structure was fabricated on SiO₂-coverd p-type Si substrate. ALD cycles of the interfacial TiO₂ were set at 4 times, which correspond to 0.16-nm-thick TiO₂ deposition under the standard ALD conditions. Post deposition annealing (PDA) was performed at 300 or 350°C in an O₂/Ar (~21%) atmosphere, and then Au electrodes were deposited on the oxide surface to fabricate the MOS capacitors. Figure 1 shows a TEM image observed from an ALD-prepared multi-stack MOS capacitor, indicating that a HfO₂/SiO₂ structure having a definite interface can be fabricated by our method. Note that interfacial TiO₂ cannot distinguish from SiO₂ in the TEM image.

3. Results and discussion

Figure 2 shows C-V curves observed from a multi-stack structure with six interface TiO₂ layers, which were prepared by 200°C-ALD and 300°C-PDA. The clockwise C-V hysteresis suggests a gate-induced potential change in the MOS structure. The C-V curve of the reference HfO₂/SiO₂ multi-stack sample without interface TiO₂ layer shows negligible hysteresis [Fig. 3]. We can reasonably conclude that the interface TiO₂ play a crucial role in the potential change.

Figure 4 shows the x-ray photoelectron spectroscopy (XPS) result for an IDM sample having uppermost 4-nm-

HfO₂ layer. The Ti 2p and Si 2p photoelectron intensities are reasonably weak considering photoelectron attenuation in the uppermost HfO₂ layer. This XPS result exhibits that the main components of each oxide are HfO₂, TiO₂, SiO₂. The Ti depth profile of secondary ion mass spectroscopy (SIMS) shown in Fig. 5 shows that Ti atoms exist at around the HfO₂/SiO₂ interface even after the PDA at 350°C. According to these results and the above TEM image, we concluded that the HfO₂/TiO₂/SiO₂ stack, which is our intended structure, can be fabricated by ALD method. Thus, we consider that the potential change observed in the *C-V* curves corresponds to the interface dipole modulation induced by structural change around the interface TiO₂ as proposed for HfO₂/1-ML TiO₂/SiO₂ stack structure fabricated by an evaporation method [3].

Finally, we will discuss the effect of ALD temperature on IDM operation. Figure 6 shows a C-V curve of six-TiO₂ modulator sample prepared by 300°C-ALD, which shows counter-clockwise C-V hysteresis. This implies that trapping of holes injected from the silicon substrate into the oxide stack is dominant, compared to the IDM effect. Figure 7 compares two TiO₂ modulator samples prepared under different ALD temperature conditions and supports the IDM characteristics lost by high ALD temperature. Figure 8 summarizes the maximum V_{fb} shift (ΔV_{fb}) estimated by C-V measurements at 5 kHz under light illumination [1, 2]. There is an obvious boundary between 250°C and 300°C. Furthermore, even though the PDA temperature exceeds this boundary temperature, IDM operation is possible for low-temperature ALD samples. Therefore, we conclude that the oxide structure formed during the ALD process mainly determines whether IDM operation is possible or not.

4. Conclusions

We demonstrated IDM operation in ALD-prepared HfO_2/SiO_2 multi-stack structure with TiO_2 modulation layers. We found that ALD temperature has a large impact on the IDM operation rather than the PDA process.

Acknowledgements

A part of the experiments was conducted at the AIST Nano-Processing Facility (AIST-NPF).

References

- [1] N. Miyata, Sci. Rep. 8, 8486 (2018).
- [2] N. Miyata, Appl. Phys. Lett. 113, 251601 (2018).
- [3] N. Miyata, J. Nara, T. Yamasaki, K. Sumita, R. Sano, and H. Nohira, IEEE International Electron Devices Meeting (IEDM), 7.6.1 (2018).

Fig. 1 TEM image of HfO_2/SiO_2 multi-stack structure prepared by ALD at 200°C. TiO₂ layer grown with 4 ALD cycles were inserted at the interface indicated by the arrow.

Fig. 2 C-V curves of multi-stack HfO₂/SiO₂ MOS with six TiO₂ modulation layers. Clockwise C-V hysteresis suggests a potential change by IDM.

Fig. 3 C-V curve of multistack HfO₂/SiO₂ MOS without interface TiO₂ layer. C-Vhysteresis is negligible.

Fig. 4 Ti 2p, Si 2p, and Hf 4f photoelectron spectra of a multi-stack structure with an uppermost 4-nm-HfO₂ layer. The main oxide components are assigned to stoichiometric TiO₂, SiO₂, and HfO₂.

Fig. 6 *C-V* curve of MOS capacitor with six TiO_2 modulation layers prepared by ALD at 300°C.

Fig. 7 C-V curves of MOS capacitors with two TiO₂ modulation layers. Hysteresis rotation depends on ALD temperature.

Fig. 5 SIMS depth profile of Ti concentration in 5-nm-HfO₂/5-nm-SiO₂ multi-stack structure. Ti atoms exist at around the HfO₂/SiO₂ interface.

Fig. 8 Effect of ALD temperature on maximum V_{fb} shift (ΔV_{fb}) of two TiO₂ layer samples. High temperature ALD samples lose the IDM characteristics.