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Abstract

Nonvolatile memories are often used for storingghts in the
artificial neural networks (ANN) utilizing computgpin-memory
(CIM) architectures.  Nevertheless the imperfectiafs the
nonvolatile memory, including the programming erraead
fluctuation, and retention loss could induce weisfhift and cause
significant computing accuracy loss, which thendtedo ANN
performance degradation. Among various computirgragons in
the ANN the Batch Normalization (BN) is found to begaod
tuning knob to recover inference accuracy undehdasues. A
simple procedure by calibrating just few BN paramstevithout
needing to re-adjust the huge amount of shiftegtsj can help to
restore the neuron distribution and dramaticallgriove the output
accuracy. ReRAM-based convolution neural network (CN8N
used as a vehicle for this study and excellent ltesare
demonstrated.

Introduction

Artificial Intelligence (Al) has drawn many intetesecently due
to many practical applications enabled by tremesdiaprovement
of computing power and big data. Yet a major boétk in the
traditional von Neumann computing architecture, tbata
movement between computing units and memory ulivitits the
performance and power efficiency of the system
Computing-in-memory architecture is considered asstiiution [2]
to tackle this problem by performing multiplicatiomnd
accumulation (MAC) operation directly inside the nogynarray.
However, errors from nonvolatile memories (NVM) Buas
memory level error (from programming or read flidtan) and the
retention-induced level shift could cause weightugachange,
leading to system failure [3, 4]. This problem ismnsignificant for
inference-only applications [5] because re-trainitig whole
weight array in the field to accommodate the eisarery difficult
considering the lack of computing power, trainiimgd, and even
the NVM programming endurance required for traimpgrations.
This paper discusses the impacts of memory errars ao
ReRAM-based CNN image classifier and demonstratetsthiea
system accuracy can be greatly recovered by sioglilgrating the
BN parameters.

Experimental Approach

A CNN image classifier with 6 convolution layersda8 fully
connected layers was used to investigate the impafciveight
errors, as shown iRig. 1 andTable 1. The weight values trained
on a server with CIFAR-10 image database training ase
converted into conductance level and programmead ittte
NOR-type CIM ReRAM arrayHig. 2). The inference accuracy is
evaluated with the test set from the same databasiee inference
operation the inputs from previous layer are firanslated into
voltage levels and applied to the BLs. An ReRAM dbikn
translates the voltageanto current based on the Ohmic Law g *

Rectified Linear Units (ReLU), are done by logic cargtion and
the parameters of these functions are store digited simplify the
evaluation, the ReRAM error characteristics wereohiced into
the CNN weight matrix layer by layer.
Results and Discussions

During the inference operation, the test image datafed into
the network without changing weight values. Theoiinfation is
processed and propagates layer by layer throughtibée network
and the final outcome provides the classificati@sutt. The
inference accuracy drops from the ideal (floatimgnp CNN on
server) accuracy when ReRAM weight errors are inteduto
only one selected layer in the systefng( 5), especially for the
case of the % convolution layer where the accuracy drops to
unacceptable value (0.2). In this case the neuaturewdistribution
(i.e. sum-of-product value distribution) stronghyifss to be more
negative and broadens significantly, as companipé¢ ideal one
(from server system) as shown hig. 6. On the other hand, the
accuracy degradation is not as significant if treght errors are
introduced to the™ layer or beyondRig. 5). The results indicate
the T convolution layer is the most critical layer, thusre prone
to weight error, in the CNN system because thisrl@xtracts the
local features of the images (whose input valuesrarstly not zero)

an

[1]and passes the information to the following lay&tee errors from

the ' layer would propagate through the rest of CNN Isyard
it's hard to average-out the error from the netwpakallelism, as
shown inFig. 7. As for the cases other than the layer, the
inference accuracy remains high. This is possible do the
following reasons. ReLU function forces all negatiradues from
previous layer output to zero, which not only diseal the
calculation fluctuation from previous layers big@atausing weight
error in the next layer become invisible. This Hssin minimum
error at output. Another key activation functiorttie BN which is
designed to deal with the covariant shift and sgakfter MAC.
Experiments showed that BN will enhance error pragiag if
input errors are not taken into consideration. @oional training
process extracts the mean and variance of the butpuron
distribution and stored them as BN parametéiig.(8). In the
inference phase the BN function uses these two peamto shift
and scale the input data to next layer to preved @xplosion.
However errors in NVM weights could deviate theeayputput
while BN parameters from ideal server environmenneca help to
recover the distribution shift. An on-demand BN paeter
calibration techniqueHig. 9) is proposed here to compensate the
weight error by updating the mean and varianceemhf MAC
results when the weights are written to the CNNtif@r first time
(i.e. the weight fluctuation), or after long terrperation (i.e. the
data retention problemEig. 10 shows the significant accuracy
improvements of BN calibration when error-bearing R&RAare
applied to one selected CNN layer, as well as wimgnperforming

v, whereg indicates the conductance of the ReRAM cell. Th&N calibration on the first layer for a system wiReRAMs in all

currents from different memory nodes on the samea&l then
collected into the output node which finishes thA@/loperation

with output current = ¥ 7 = ¥ g*v. Three ReRAM error sources

are then introduced to the system: program eread fluctuation,
and retention loss. Previous studies [6] suggegtatl program
errors are around 0.07 in standard deviation, aad fluctuations
are within 0.01~0.04 in standard deviation, depegdon its

the convolution layers. Significant accuracy imgments in the
150°C accelerated retention test are also demonstiraféig. 11.
Conclusion
The impacts of weight error in CIM system is studigith
ReRAM CNN image classifier. The first convolutionédays found
most prone to memory level change where the outyguiron
distribution is shifted and broadened. A BN paramegdibration

conductance levels as showrFig. 3. The amount of retention loss method is proposed by exploiting the mean and naeiaf MAC

is also suggested in [6]. The server-trained CNNgttevalues
ranging between -0.2 and 0.2 are linearly mappedth®
conductance range from 2x3I8 to 4x10°S, as shown ifig. 4.

The activation functions, including BN, Max Pooliigropout, aﬁgg?’

distribution to determine BN parameters. As a resiut CNN
accuracy can be greatly improved even with ermarmfNVM level
flyctuation and retention shift.
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Convi Conv2 |Act. Func.| conva | A% | conva [act. Func.|convs| A% |convs [Act. Func.| FLa [Act. Func.| Fe2 |Act. Func.| Fei3
Func. Func. Func.
’:::er;/n 128 BN | 128 | BN | 256 [ BN | 256 | BN [ 512 [ BN [ 512 [ BN [1024] BN [1024| BN |10
RelU Max RelU Max RelU Mex Dropout Dropout
e | pooling | | pooling | | pooling |
Dropout Dropout Dropout RelU RelU
RelU RelU RelU

*BN=Batch Normalization
10 classes

Table 1 Detailed CNN model including filter numbers for eotution

Figure 1 CNN architecture with 6 convolution layers and Byfconnected layers, neuron numbers for fully connected layers activation functions
layers was used to perform CIF-10 image recognitio

for each layer.
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Batch Normalization:
Input: Values of x; over a mini-batch: B={x; ,,}; Parametersto be learned: y, 8
Output:{y;=BNy, 5 (x;)}
Original Process:
i 1

Mean of mini-batch (without weight errors): g = ;Z}Lﬁ, X

Variance of mini-batch (without weight errors): ay 2=$ T — #,,)2
Xi~kp

Normalize (without weight errors): ¥; =
J apte

Scale and shift (without weight errors): y;=BN,, ¢ (x;)=yX; + 8
Modified Process:

Mean of mini-batch (with weight errors): ut" = i}j:’_ﬁw %

Variance of mini-batch (with weight errors): o ’zri G —ug)?
\Irri’ +e

Scale and shift (with weight errors): y; -BN”;( x)=yx% + B

Normalize (with weight errors): ©;' =

[ conv1-output (Floating Point Weight)
[71Conv1-output (Weight with Errors)
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Figure 8 Mathematical procedures of batch

normalization. The mean and variance of wei
errors should be revisited based on
sum-of-product values. [7]

>
Figure 10 The inference accuracy before and aftgt 0.7

modifying the mean and variance parameters.
X-axis label indicates which layer within CNN

replaced with ReRAM. “All convolution Iayers"§
mean that ReRAM’s are used in all CNN Iayer§3
The accuracies are significantly improved W|tnE

BN calibration.
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Figure 6 Comparison of the neuron output valggcn convolution layer when addlng progra
distributions, i.e. sum- of-product of ideal welght

error and read fluctuation on the ]2 and 3
convolution layer, respectively.
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Figure 9 The flow chart of
conventional and modified data
flow for inference operation. The
in-field on-demand calibrated
mean and variance are obtained by
inputting the training data set to the
error-bearing weight matrix, which
helps to compensate the weight
error.
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