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Abstract 
Nonvolatile memories are often used for storing weights in the 

artificial neural networks (ANN) utilizing computing-in-memory 
(CIM) architectures.  Nevertheless the imperfections of the 
nonvolatile memory, including the programming error, read 
fluctuation, and retention loss could induce weight shift and cause 
significant computing accuracy loss, which then leads to ANN 
performance degradation. Among various computing operations in 
the ANN the Batch Normalization (BN) is found to be a good 
tuning knob to recover inference accuracy under such issues. A 
simple procedure by calibrating just few BN parameters, without 
needing to re-adjust the huge amount of shifted weights, can help to 
restore the neuron distribution and dramatically improve the output 
accuracy. ReRAM-based convolution neural network (CNN) is 
used as a vehicle for this study and excellent results are 
demonstrated.  

Introduction 
Artificial Intelligence (AI) has drawn many interests recently due 

to many practical applications enabled by tremendous improvement 
of computing power and big data. Yet a major bottleneck in the 
traditional von Neumann computing architecture, the data 
movement between computing units and memory units, limits the 
performance and power efficiency of the system [1]. 
Computing-in-memory architecture is considered as the solution [2] 
to tackle this problem by performing multiplication and 
accumulation (MAC) operation directly inside the memory array. 
However, errors from nonvolatile memories (NVM) such as 
memory level error (from programming or read fluctuation) and the 
retention-induced level shift could cause weight value change, 
leading to system failure [3, 4]. This problem is more significant for 
inference-only applications [5] because re-training the whole 
weight array in the field to accommodate the error is very difficult 
considering the lack of computing power, training time, and even 
the NVM programming endurance required for training operations. 
This paper discusses the impacts of memory errors on a 
ReRAM-based CNN image classifier and demonstrates that the 
system accuracy can be greatly recovered by simply calibrating the 
BN parameters. 

Experimental Approach 
A CNN image classifier with 6 convolution layers and 3 fully 

connected layers was used to investigate the impacts of weight 
errors, as shown in Fig. 1 and Table 1. The weight values trained 
on a server with CIFAR-10 image database training set are 
converted into conductance level and programmed into the 
NOR-type CIM ReRAM array (Fig. 2).  The inference accuracy is 
evaluated with the test set from the same database. In the inference 
operation the inputs from previous layer are first translated into 
voltage levels and applied to the BLs. An ReRAM cell then 
translates the voltage v into current i based on the Ohmic Law i= g * 
v, where g indicates the conductance of the ReRAM cell. The 
currents from different memory nodes on the same SL are then 
collected into the output node which finishes the MAC operation 
with output current I = Σi = Σg*v. Three ReRAM error sources 
are then introduced to the system: program error, read fluctuation, 
and retention loss. Previous studies [6] suggested that program 
errors are around 0.07 in standard deviation, and read fluctuations 
are within 0.01~0.04 in standard deviation, depending on its 
conductance levels as shown in Fig. 3. The amount of retention loss 
is also suggested in [6]. The server-trained CNN weight values 
ranging between -0.2 and 0.2 are linearly mapped to the 
conductance range from 2x10-6S to 4x10-5S, as shown in Fig. 4. 
The activation functions, including BN, Max Pooling, Dropout, and 

Rectified Linear Units (ReLU), are done by logic computation and 
the parameters of these functions are store digitally. To simplify the 
evaluation, the ReRAM error characteristics were introduced into 
the CNN weight matrix layer by layer. 

Results and Discussions 
During the inference operation, the test image data are fed into 

the network without changing weight values. The information is 
processed and propagates layer by layer through the whole network 
and the final outcome provides the classification result. The 
inference accuracy drops from the ideal (floating-point CNN on 
server) accuracy when ReRAM weight errors are introduced to 
only one selected layer in the system (Fig. 5), especially for the 
case of the 1st convolution layer where the accuracy drops to an 
unacceptable value (0.2). In this case the neuron value distribution 
(i.e. sum-of-product value distribution) strongly shifts to be more 
negative and broadens significantly, as comparing to the ideal one 
(from server system) as shown in Fig. 6. On the other hand, the 
accuracy degradation is not as significant if the weight errors are 
introduced to the 2nd layer or beyond (Fig. 5).  The results indicate 
the 1st convolution layer is the most critical layer, thus more prone 
to weight error, in the CNN system  because this layer extracts the 
local features of the images (whose input values are mostly not zero) 
and passes the information to the following layers. The errors from 
the 1st layer would propagate through the rest of CNN layers and 
it’s hard to average-out the error from the network parallelism, as 
shown in Fig. 7. As for the cases other than the 1st layer, the 
inference accuracy remains high. This is possibly due to the 
following reasons. ReLU function forces all negative values from 
previous layer output to zero, which not only discarded the 
calculation fluctuation from previous layers but also causing weight 
error in the next layer become invisible. This results in minimum 
error at output. Another key activation function is the BN which is 
designed to deal with the covariant shift and scaling after MAC. 
Experiments showed that BN will enhance error propagation if 
input errors are not taken into consideration. Conventional training 
process extracts the mean and variance of the output neuron 
distribution and stored them as BN parameters (Fig. 8). In the 
inference phase the BN function uses these two parameters to shift 
and scale the input data to next layer to prevent data explosion. 
However errors in NVM weights could deviate the layer output 
while BN parameters from ideal server environment cannot help to 
recover the distribution shift. An on-demand BN parameter 
calibration technique (Fig. 9) is proposed here to compensate the 
weight error by updating the mean and variance values of MAC 
results when the weights are written to the CNN for the first time 
(i.e. the weight fluctuation), or after long term operation (i.e. the 
data retention problem). Fig. 10 shows the significant accuracy 
improvements of BN calibration when error-bearing ReRAMs are 
applied to one selected CNN layer, as well as when only performing 
BN calibration on the first layer for a system with ReRAMs in all 
the convolution layers. Significant accuracy improvements in the 
150oC accelerated retention test are also demonstrated in Fig. 11. 

Conclusion 
The impacts of weight error in CIM system is studied with 

ReRAM CNN image classifier. The first convolution layer is found 
most prone to memory level change where the output neuron 
distribution is shifted and broadened. A BN parameter calibration 
method is proposed by exploiting the mean and variance of MAC 
distribution to determine BN parameters. As a result the CNN 
accuracy can be greatly improved even with errors from NVM level 
fluctuation and retention shift. 
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Figure 1 CNN architecture with 6 convolution layers and 3 fully connected 
layers was used to perform CIFAR-10 image recognition. 

Table 1 Detailed CNN model including filter numbers for convolution 
layers, neuron numbers for fully connected layers and activation functions 
for each layer. 
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Figure 2 Basic ReRAM array structure where the 
conductance values of the ReRAM cells represent the 
analog weights in CNN. 

Figure 3 The standard deviation of 
conductance when programming the ReRAM 
cell to a specific conductance value (program 
error) and the conductance fluctuation when 
reading the ReRAM cell at different 
conductance states (read fluctuation). 

Figure 4 Weight distribution of each convolution 
layer and conductance range of ReRAM cells 
linearly map to weight range.  

Figure 5 Impacts of program error and read 
fluctuation in only one assigned convolution layer on 
inference accuracy. The ideal accuracy using precise 
floating point weights is around 0.904.  

Figure 6 Comparison of the neuron output value 
distributions, i.e. sum-of-product of ideal weights 

and weights with errors at 1
st
 convolution layer. 

Figure 7 Normalized root-mean-square error in 
each convolution layer when adding program 

error and read fluctuation on the 1
st
, 2

nd
, and 3

rd
 

convolution layer, respectively. 

Figure 8 Mathematical procedures of batch 
normalization. The mean and variance of weight 
errors should be revisited based on the 
sum-of-product values. [7] 

Figure 9 The flow chart of 
conventional and modified data 
flow for inference operation. The 
in-field on-demand calibrated 
mean and variance are obtained by 
inputting the training data set to the 
error-bearing weight matrix, which 
helps to compensate the weight 
error.  

Figure 10 The inference accuracy before and after 
modifying the mean and variance parameters. The 
X-axis label indicates which layer within CNN is 
replaced with ReRAM. “All convolution layers” 
mean that ReRAM’s are used in all CNN layers. 
The accuracies are significantly improved with 
BN calibration. 

Figure 11 The inference accuracy after baking 
at 150oC for different time lengths with/without 
calibrated mean and variance for the 1st 
convolution layer. The accuracies were 
significantly improved.  
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