

Impacts and Solutions of Nonvolatile-Memory-Induced Weight Error in the
Computing-in-Memory Neural Network System

 D. Y. Lee#, C. H. Wang#, Y. H. Lin#, M. L. Wei*, M. H. Lee#, H. L. Lung#, K. Y. Hsieh#, K. C. Wang#,*, and C. Y. Lu#,*
Emerging Central Lab., * Emerging System Lab., Macronix International Co., Ltd.

16 Li-Hsin Rd. Hsinchu Science Park, Hsinchu, Taiwan, R.O.C.
TEL: +886-3-5786688 ext. 78158, FAX: +886-3-5789087, Email: dylee@mxic.com.tw

Abstract
Nonvolatile memories are often used for storing weights in the

artificial neural networks (ANN) utilizing computing-in-memory
(CIM) architectures. Nevertheless the imperfections of the
nonvolatile memory, including the programming error, read
fluctuation, and retention loss could induce weight shift and cause
significant computing accuracy loss, which then leads to ANN
performance degradation. Among various computing operations in
the ANN the Batch Normalization (BN) is found to be a good
tuning knob to recover inference accuracy under such issues. A
simple procedure by calibrating just few BN parameters, without
needing to re-adjust the huge amount of shifted weights, can help to
restore the neuron distribution and dramatically improve the output
accuracy. ReRAM-based convolution neural network (CNN) is
used as a vehicle for this study and excellent results are
demonstrated.

Introduction
Artificial Intelligence (AI) has drawn many interests recently due

to many practical applications enabled by tremendous improvement
of computing power and big data. Yet a major bottleneck in the
traditional von Neumann computing architecture, the data
movement between computing units and memory units, limits the
performance and power efficiency of the system [1].
Computing-in-memory architecture is considered as the solution [2]
to tackle this problem by performing multiplication and
accumulation (MAC) operation directly inside the memory array.
However, errors from nonvolatile memories (NVM) such as
memory level error (from programming or read fluctuation) and the
retention-induced level shift could cause weight value change,
leading to system failure [3, 4]. This problem is more significant for
inference-only applications [5] because re-training the whole
weight array in the field to accommodate the error is very difficult
considering the lack of computing power, training time, and even
the NVM programming endurance required for training operations.
This paper discusses the impacts of memory errors on a
ReRAM-based CNN image classifier and demonstrates that the
system accuracy can be greatly recovered by simply calibrating the
BN parameters.

Experimental Approach
A CNN image classifier with 6 convolution layers and 3 fully

connected layers was used to investigate the impacts of weight
errors, as shown in Fig. 1 and Table 1. The weight values trained
on a server with CIFAR-10 image database training set are
converted into conductance level and programmed into the
NOR-type CIM ReRAM array (Fig. 2). The inference accuracy is
evaluated with the test set from the same database. In the inference
operation the inputs from previous layer are first translated into
voltage levels and applied to the BLs. An ReRAM cell then
translates the voltage v into current i based on the Ohmic Law i= g *
v, where g indicates the conductance of the ReRAM cell. The
currents from different memory nodes on the same SL are then
collected into the output node which finishes the MAC operation
with output current I = Σi = Σg*v. Three ReRAM error sources
are then introduced to the system: program error, read fluctuation,
and retention loss. Previous studies [6] suggested that program
errors are around 0.07 in standard deviation, and read fluctuations
are within 0.01~0.04 in standard deviation, depending on its
conductance levels as shown in Fig. 3. The amount of retention loss
is also suggested in [6]. The server-trained CNN weight values
ranging between -0.2 and 0.2 are linearly mapped to the
conductance range from 2x10-6S to 4x10-5S, as shown in Fig. 4.
The activation functions, including BN, Max Pooling, Dropout, and

Rectified Linear Units (ReLU), are done by logic computation and
the parameters of these functions are store digitally. To simplify the
evaluation, the ReRAM error characteristics were introduced into
the CNN weight matrix layer by layer.

Results and Discussions
During the inference operation, the test image data are fed into

the network without changing weight values. The information is
processed and propagates layer by layer through the whole network
and the final outcome provides the classification result. The
inference accuracy drops from the ideal (floating-point CNN on
server) accuracy when ReRAM weight errors are introduced to
only one selected layer in the system (Fig. 5), especially for the
case of the 1st convolution layer where the accuracy drops to an
unacceptable value (0.2). In this case the neuron value distribution
(i.e. sum-of-product value distribution) strongly shifts to be more
negative and broadens significantly, as comparing to the ideal one
(from server system) as shown in Fig. 6. On the other hand, the
accuracy degradation is not as significant if the weight errors are
introduced to the 2nd layer or beyond (Fig. 5). The results indicate
the 1st convolution layer is the most critical layer, thus more prone
to weight error, in the CNN system because this layer extracts the
local features of the images (whose input values are mostly not zero)
and passes the information to the following layers. The errors from
the 1st layer would propagate through the rest of CNN layers and
it’s hard to average-out the error from the network parallelism, as
shown in Fig. 7. As for the cases other than the 1st layer, the
inference accuracy remains high. This is possibly due to the
following reasons. ReLU function forces all negative values from
previous layer output to zero, which not only discarded the
calculation fluctuation from previous layers but also causing weight
error in the next layer become invisible. This results in minimum
error at output. Another key activation function is the BN which is
designed to deal with the covariant shift and scaling after MAC.
Experiments showed that BN will enhance error propagation if
input errors are not taken into consideration. Conventional training
process extracts the mean and variance of the output neuron
distribution and stored them as BN parameters (Fig. 8). In the
inference phase the BN function uses these two parameters to shift
and scale the input data to next layer to prevent data explosion.
However errors in NVM weights could deviate the layer output
while BN parameters from ideal server environment cannot help to
recover the distribution shift. An on-demand BN parameter
calibration technique (Fig. 9) is proposed here to compensate the
weight error by updating the mean and variance values of MAC
results when the weights are written to the CNN for the first time
(i.e. the weight fluctuation), or after long term operation (i.e. the
data retention problem). Fig. 10 shows the significant accuracy
improvements of BN calibration when error-bearing ReRAMs are
applied to one selected CNN layer, as well as when only performing
BN calibration on the first layer for a system with ReRAMs in all
the convolution layers. Significant accuracy improvements in the
150oC accelerated retention test are also demonstrated in Fig. 11.

Conclusion
The impacts of weight error in CIM system is studied with

ReRAM CNN image classifier. The first convolution layer is found
most prone to memory level change where the output neuron
distribution is shifted and broadened. A BN parameter calibration
method is proposed by exploiting the mean and variance of MAC
distribution to determine BN parameters. As a result the CNN
accuracy can be greatly improved even with errors from NVM level
fluctuation and retention shift.

 H-6-02 Extended Abstracts of the 2019 International Conference on Solid State Devices and Materials, Nagoya, 2019, pp393-394

- 393 -

Figure 1 CNN architecture with 6 convolution layers and 3 fully connected
layers was used to perform CIFAR-10 image recognition.

Table 1 Detailed CNN model including filter numbers for convolution
layers, neuron numbers for fully connected layers and activation functions
for each layer.

References
[1] J. Hasler, et al., Front. Neurosci., vol.7, art. 118, 2013
[2] X. Guo, et al., IEDM, session 6.5, pp. 151-154, 2017
[3] Y. H. Lin, et al., IEDM, session 2.5, pp. 40-43, 2017

[4] J. Kang, et al., IEDM, session 6.4, pp. 147-150, 2017
[5] A. Mohanty, et al., IEDM, session 6.3, pp. 143-146, 2017
[6] Y. H. Lin, et al., TED, vol. 66 pp. 1289-1295, 2019.
[7] S. Ioffe and C. Szegedy, ICML, volume 37, pp. 448-456, 2015

Figure 2 Basic ReRAM array structure where the
conductance values of the ReRAM cells represent the
analog weights in CNN.

Figure 3 The standard deviation of
conductance when programming the ReRAM
cell to a specific conductance value (program
error) and the conductance fluctuation when
reading the ReRAM cell at different
conductance states (read fluctuation).

Figure 4 Weight distribution of each convolution
layer and conductance range of ReRAM cells
linearly map to weight range.

Figure 5 Impacts of program error and read
fluctuation in only one assigned convolution layer on
inference accuracy. The ideal accuracy using precise
floating point weights is around 0.904.

Figure 6 Comparison of the neuron output value
distributions, i.e. sum-of-product of ideal weights

and weights with errors at 1
st
 convolution layer.

Figure 7 Normalized root-mean-square error in
each convolution layer when adding program

error and read fluctuation on the 1
st
, 2

nd
, and 3

rd

convolution layer, respectively.

Figure 8 Mathematical procedures of batch
normalization. The mean and variance of weight
errors should be revisited based on the
sum-of-product values. [7]

Figure 9 The flow chart of
conventional and modified data
flow for inference operation. The
in-field on-demand calibrated
mean and variance are obtained by
inputting the training data set to the
error-bearing weight matrix, which
helps to compensate the weight
error.

Figure 10 The inference accuracy before and after
modifying the mean and variance parameters. The
X-axis label indicates which layer within CNN is
replaced with ReRAM. “All convolution layers”
mean that ReRAM’s are used in all CNN layers.
The accuracies are significantly improved with
BN calibration.

Figure 11 The inference accuracy after baking
at 150oC for different time lengths with/without
calibrated mean and variance for the 1st
convolution layer. The accuracies were
significantly improved.

- 394 -

