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Abstract 

Pruning is an effective technique to make network 

sparse. In this paper, we construct SNNs with NOR flash 

type synaptic devices and analyze the effect of pruning. 

The results show trade-off between performance and 

power efficiency in network, but in the optimized point, 

power can be reduced without significant accuracy loss. 

Moreover, we also propose asymmetric pruning that can 

reduce power consumptions more efficiently. 

 

1. Introduction 

Recently, spiking neural networks (SNN) have been 

widely studied to compose low power cognitive systems [1]. 

SNN mimics the energy efficient system, human brain, and 

processes data through spikes, which is superior to conven-

tional deep learning in terms of power consumption. The size 

of the network is getting bigger and more complex to achieve 

higher accuracy [2]. Therefore, research on pruning that con-

structs a sparse network by excluding non-critical synapses is 

actively studied [3]. In this paper, we analyze the effect of 

pruning in SNN composed of fabricated synaptic devices. 

 

2. Hardware neural network 

A synaptic device based on NOR flash memory was re-

ported to compose artificial synaptic array in [4]. As shown 

in Fig. 1 (c), an asymmetric floating-gate acts as a charge stor-

age layer to shift the threshold voltage of the device. The de-

vice is compatible with CMOS process, and is able to be op-

erated at a low voltage due to its geometrical characteristics. 

As shown in Fig. 1 (d), the device is erased and programmed 

by the voltage difference between gate and source, which cor-

responds to the long-term potentiation (LTP) and depression 

(LTD) in neural systems. The network composed of the arti-

ficial synapses compute vector-matrix-multiplication very ef-

ficiently by biasing the input to gate and summing the current 

to the drain. 

In the network, synaptic weight can be trained by various 

methods. First, weights are optimized by learning using back-

propagation and transferred to the array. Only inference pro-

cess is conducted by SNN. The method, also known as off-

chip learning, has the advantage that it can reduce power con-

sumption without degradation of the performance of the net-

work. On the other hand, networks can be trained through bio-

inspired method, STDP. In this paper, simplified STDP is 

studied to train network reliably [5]. The learning process is 

depicted in Fig. 2 (a). If a neuron fires, the feedback signal is 

applied to the source line. As like in Fig. 2 (b), the weight of 

synapses contributed to the neuron’s fire are increased and the 

others are decreased [6]. This method has a big advantage that 

the network can self-cluster similar patterns without supervi-

sion. The performance of this unsupervised STDP based SNN 

is shown in Fig. 3(a). 

 

3. Analyzation on pruning 

   After training process, non-critical synapses are pruned 

for getting sparsity in the network. In conventional studies, 

synapses whose weights are lower than pruning threshold are 

completely excluded. However, in this paper, the weights are 

set to the minimum value and continuously included to learn-

ing. The process of training is shown in Fig. 3 (b) and (c). 

Through the retraining process between pruning, the accuracy 

is recovered from distorted weight distribution. 

The effect of pruning in the network is shown in Fig. 4. 

We compare the recognition accuracy and the number of 

spikes required for inferencing MNIST data set. The number 

of spikes is a parameter indicating the power used in inference. 

Fig. 4 (a) and (b) shows the results for the network trained by 

STDP. In this case, only the excitatory synapses were consid-

ered. As the pruning threshold increases, both accuracy and 

the number of spikes tend to decrease. The best accuracy 

shows 89.4% in accuracy, but pruning results in 0.86% drop 

in accuracy with 1.2 times reduction in energy consumption. 

With further pruning, accuracy dropped in 5.84% and power 

is decreased 2.33 times. The results for the SNN trained by 

back propagation (BP) are shown in Fig. 4 (c) and (d). In this 

case, excitatory and inhibitory synapses are pruned equally. 

Likewise, the best accuracy was 97.78%, but pruning caused 

an accuracy drop of 0.57%, resulting in a 1.84 times power 

reduction. With further pruning, power is reduced 2.02 times 

with an accuracy drop of 1.12%. Compared to the network 

trained by STDP, it shows relatively less degradation of ac-

curacy with pruning. 

In SNN trained by BP, inhibitory synapses help to re-

duce the number of spikes by discharging I&F circuits. In 

other words, pruning inhibitory synapses less than excitatory 

synapses can give more reduction of energy consumption. 

The effect of asymmetric pruning is analyzed in Fig. 5. Asym-

metric pruning results in degradation of the network’s perfor-

mance. Especially, excessive asymmetric pruning makes it 

impossible to fire, so that the network shows poor accuracy. 

However, proper asymmetric pruning reduces the spike num-

ber in both layers without significant loss of accuracy. In Fig. 

6, comparison between two types of pruning is made. Even 

on networks with similar accuracy, the asymmetric pruning 
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consumes much less power in the inference process. It indi-

cates that reduction of energy consumption can be achieved 

more effectively by adopting asymmetric pruning. 

 

4. Conclusion 

In this paper, we have analyzed the effect of pruning in 

SNN composed with asymmetric floating-gate based synaptic 

devices. The network was trained by two manners, STDP and 

BP. The accuracy and the spike numbers show trade-off rela-

tionship with pruning threshold, but an optimization point can 

be found. Also, we proposed asymmetric pruning. Setting dif-

ferent pruning thresholds in excitatory and inhibitory parts of 

the synapses enabled more effective pruning.  
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Fig. 1. Cross-sectional views of a TFT-type NOR flash memory cell cut in the (a) WL direction, and (b) bird’s eye view of the NOR flash 

array. (c) Gate stack of the synaptic device. (d) Measured LTP and LTD characteristics of the device with the number of applied pulses. 

Program and erase pulses are applied between gate and source electrode. 

Fig. 5. (a) Accuracy and (b), (c) the number of spikes in each layer based on asym-

metric pruning. 
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Fig. 6. The spike number in each layer vs recognition 

accuracy of the network under two pruning conditions. 

Fig. 4. The recognition accuracy and the required number of spikes in inferencing process in SNN trained by STDP rule (a), (b) and BP 

algorithm (c), (d). SpikeN1 and SpikeN2 represent the number of spikes in the hidden and output layers, respectively.  

Fig. 2. (a) 3D schematic view to illustrate training in neural net-

work. (b) Pulse scheme that enables pattern training by using sim-

plified STDP rule. 

Fig. 3. (a) Recognition accuracy of the network versus output neu-

ron number. Process for pruning in SNN trained by (b) STDP and 

(c) BP algorithms.  
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