Size Modulated Nitrogen-Doped Graphene Oxide Quantum Dots for Diffusive Memristor based Synaptic Device Applications

Andrey S. Sokolov, Yu-Rim Jeon, Hoonhee Han, Boncheol Ku, Gul Hassan, Haider Abbas,

and Changhwan Choi*

Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea *Phone: +82-2-2220-0383 *E-mail: <u>cchoi@hanyang.ac.kr</u>

Abstract

We report an electronic synapse based on threshold switching (TS) phenomenon by silver ion migration diffusive dynamics in Ag/N-GOQDs/Pt device, where nitrogen-doped graphene oxide quantum dots (N-GOQDs) with different sizes ranging in $0.5 \sim 12$ nm as thin film serve for a memory storage medium. Among all, TS device with 3~6 nm sized N-GOQDs possesses the best thin film self-assembly ability, leading to the reliable TS behavior. Further, important bio-synaptic functions are successfully emulated in the device, such as short-term memory (STP), long-term memory (LTP), and STP-to-LTP memory transition.

1. Introduction

Neuromorphic computing as a future computing paradigm can simultaneously combine information processing and memory storage to overcome the limitations of conventional von Neumann computing [1]. To realize neuromorphic systems, the bio-similar synapses should be well-emulated by artificial electronic synapses in terms of size, power and synaptic functioning. Accordingly, many devices based on resistive switching (RS) phenomenon have been investigated for the next-generation memory and artificial electronic synapses [2,3]. Among these devices, a two-terminal device with silver ion (Ag⁺) diffusive dynamics in inorganic/organic ionic conductor matrix was shown to closely emulate physical behavior similar to bio-synaptic Ca^{2+} dynamics [4,5,6].

In this study, to date, we fabricated and investigated resistive threshold switching (TS) characteristics in Ag/N-GOQDs/Pt device by utilizing nitrogen-doped graphene oxide quantum dots (N-GOQDs) with categorized different sizes (0.5 nm ~ ~12 nm) of QDs and the best TS performance is obtained with QDs having 3 to 6 nm size for the synaptic memorization medium. It is found that N-GOQDs with size range of 0.5 ~ 6 nm exhibits TS behavior. The improved TS behavior is observed with thicker QD size (3 ~ 6 nm) in terms of reliability/stability of TS characteristics and lower threshold voltage (V_{th}~<0.18V) switching. Moreover, the core synaptic functions of biological synapse such as short-term memory (STP), long-term memory (LTP) and STP-to-LTP transition have been well-emulated within N-GOQDs device having a size range of 3 to 6 nm.

2. Experiment

The Ag/N-GOQDs/Pt stacks were fabricated on the thermally oxidized silicon substrate (Si/SiO₂). A Si/SiO₂/Ti/Pt substrate was standard pre-cleaned for 20 min and then dried in N₂ gas. The sized N-GOQDs were solution-prepared from stirring the graphite powder with a solvent for long time (hours), and then solution was heated up to defined temperature to achieve desired size products, i.e. N-GOQDs [7]. For further size separation of QDs different micro-filter membranes (1k, 10k, 50k class) were utilized. Micro-filter membrane of 1k, 10k, and 50 k class could separate different size range of QDs with 0.5 to 3 nm, 3 to 6 nm and 7 to 12 nm, respectively. Later, N-GOQDs quantum dots were drop-casted on the Pt/Ti substrate in concentration of 0.5% in DI water solution to form N-GOQDs thin films on the substrate surface. Later, the Ag top electrode was prepared by sputtering. The I-V electrical characterization was performed by KeySight-1500B analyzer.

3. Results and Discussion

Table I represents the sized N-GOQDs depending on micro-filter membrane class (1k~0.5-3nm, 10k~3-6nm, 50k~7-12nm). The TS characteristic was performed for single, double, and triple-coated QDs and assessed for best performer from 10k-based TS device (marked yellow). Figure 1a-d shows the solution drop-casted N-GOQDs to form thin film and its complete device after Ag/N-GOQDs/Pt, following the Ag+ ions migration mechanism via QDs functional groups, i.e. OH, CO, NH₂, and etc. Optical microscopy (OM) imaging confirms thin films self-assembly abilities of QDs after 70 °C baking, which are differently sized. Figure 2a-c shows I-V TS characteristics of differently sized N-GOQD's devices. TS behavior was observed for each QDs sized device. However, higher Vth (~0.8V-~0.3V) to induce memory SET operation was observed for 1k- and 50k-sized QDs devices, respectively, and in case of 1k memory switching instabilities. Oppositely, 10k-sized QDs device showed lower Vth (~0.17V) switching and better device TS stability, whereas voltage bias applied from $0 \text{ V} \rightarrow 0.22 \text{ V}$ to induce memory SET operation for on-state (R_{OFF}), controlled by I_{CC}=12µA, and when bias goes back $0.35 \text{ V} \rightarrow 0 \text{ V}$, the device's steep self-current decrease observed (back to R_{ON} state), indicating memory RESET operation, and these memory SET/RESET processes is highly repeatable. The important resistance ratio R_{ON}/R_{OFF} is high in order of ~10⁶. Figure 3 displays the pulse voltage operation of the 10k-sized QDs device, which confirms sufficient time to permit spontaneous relaxation of the Ag⁺. In this case, one pulse (0.25V and 500µsec) was applied, and the three steps, i.e. "Delay \rightarrow Shoot \rightarrow Relaxation" of the TS appear, the inset shows magnified relaxation time, i.e. $\tau_R \sim 1.5$ msec. Figure 4a-d displays famous biological model of memorization developed by Atkinson and Shiffrin. Interestingly, the bio-synapses follow the same memory model. When stimuli arrive to the synapse, transmitters (triggered by Ca2+ ions) conductive channel starts to form inside the synapse and memorize its conductance state for short-time being (short-term memory - STP) and if no further stimuli synapse easily forgets everything. However, upon the many repetitive stimuli, the transition from short-term conductance to long-term conductance can occur and synapse memorizes its conductance state, LTP memorization. In analogy, the 10k-sized Ag/NGOQDs/Pt device after 10 pulses application memorizes elevated conductance state (G~3mS), but after 60 seconds conductance decreased (G~0S). However, after 30 pulses application, the device memorizes elevated conductance state (G~6mS) and even after long time 30 minutes conductance is still measurable (G~5.1mS). Similar to the bio-synapses, the important short-term memory (STP) to long-term memory (LTP) transition could be observed.

4. Conclusions

To date, the TS behavior was demonstrated in differently sized (from ~0.5nm to ~12nm range) QDs Ag/N-GOQDs/Pt stack device, where N-GOQDs thin film serves as memory storage medium. Among all devices, the best TS performance was found in QDs with size range of 3 ~5nm due to thin film conformity. The RS window (R_{ON}/R_{OFF}) was found to be ~10⁶ with suitable TS repeatability. The important bio-synaptic functions such as STP, LTP and STP-to-LTP transition were successfully emulated in the artificial electronic synapse device.

Acknowledgements

This research was supported by the Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of science, ICT & Future Planning. (NRF-2016M3A7B4910426) as well as by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1A6A1A03013422).

References

- [1] L. F. Abbott et. al., Nature. 431 (2004) 796.
- [2] Pan F. et al., Materials Science and Engineering. 83 (2014) 59.
- [3] Kuzum D. et al., Nanotechnology. 24 (2013) 382001.
- [4] Wang Z. et al., Nature materials. 16 (2017) 101.
- [5] Kim M. K. et al., ACS Nano. 12 (2018) 1680.
- [6] Sokolov A. S. et al., Adv.Func.Mat. (2019) 1807504.
- [7] Shen J. et al., Chemical communications. 48 (2012) 3686.

Table I – N-GOQDs Size dependent Threshold Switching (TS) behavior

<u>N-GO QDs</u> Solution- processed Size		1k, 0.5-3nm	10k, 3-6nm	50k, 7-12nm
1 – Single	Coating with 0.5% <u>N-GO QDs</u>	x - TS	x - TS	x - TS
2 – Double		o – TS(+/-)	o – TS(++)	o – TS(+/-)
3 – Triple		o – TS(+/-)	o – TS(+/-)	o – TS(+/-)

Fig. 2 – Threshold switching (TS) behavior of the Ag/N-GOQDs/Pt devices with **a**) 1k deposited N-GOQDs thin film, **b**) 10k deposited N-GOQDs film, and **c**) 50k deposited N-GOQDs film

Fig. 3 – Shoot-Delay-Relax pulse characteristics of the Ag/N-GOQDs/Pt for the best TS performer 10k double coated thin film.

Fig. 4 – **a**) Short-term memory (STP; 10 Pulses) and **b**) Long-term memory (LTP; 30 Pulses) Pulse I-V characteristics of Ag/N-GOQDs/Pt best TS performer (10k) device and according **c**) Atkinson n' Shiffrin memorization model, and **d**) STP & LTP retention of the device after 10 and 30 stimuli, respectively.