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Abstract

An etching process is essential for fabricating the
structures of GaN power and RF devices, e.g., isolations,
mesas, trenches, and gate-recesses. Photoelectrochemical
etching of GaN, which is based on photo-assisted anodic
oxidation, is preferred for these GaN device fabrication
process. Photoelectrochemical etching has good controlla-
bility of the etching depth owing to Faraday's laws of elec-
trolysis and has a high etching selectivity against etching
masks. The etched surface has exhibits little damage; this
was confirmed by photoluminescence and by a low inter-
face state of the metal-oxide—semiconductor structure.
An experimental setup for simple contactless photoelec-
trochemical etching was also constructed, wherein the
sample was dipped into the electrolyte under UV irradia-
tion. These results indicate that photoelectrochemical
etching is a preferable low-damage wet etching process
for GaN power and RF devices.

1. Introduction

Gallium nitride (GaN) is widely used in electronic RF de-
vices for mobile base stations to reduce energy consumption
and meet 4-5G application demands [1]. In addition, GaN
power devices have recently attracted considerable research
attention as energy-saving solutions because of their low spe-
cific on-resistance coupled with a high breakdown voltage [2-
4].

An etching process is essential for fabricating GaN RF
and power device structures, e.g., isolations, mesas, trenches,
and gate-recesses. Generally, GaN is etched by inductively
coupled plasma reactive-ion etching [5,6]. However, plasma
can easily damage the GaN surfaces. Although GaN has a
good chemical stability, photoelectrochemical reactions have
been reported for the wet etching process [7-10], which has
the feature of plasma damage-free. In this paper, we review
recent progress in the development of a damage-free GaN wet
etching process by means of a PEC reaction [11-16].

2. Experimental method and results

Photo-assisted anodic oxidation is the basis of PEC etch-
ing of GaN [7-16]. GaN dissolves as Ga>" ions owing to the
holes excited by UV irradiation at the anode of the GaN/elec-
trolyte interface. The Ga*" ions react with hydroxide ions
(OH") in the electrolyte, resulting in the formation of Ga,Os.

Ga,0s dissolves in acid or base; thus, this is the basis of PEC
etching of GaN as shown in Eq. (1) and (2).
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Figure 1 shows a schematic representation of typical PEC
etching of GaN [12]. n-GaN and AlGaN/GaN HEMT epitax-
ial wafers were used as etching samples, which were grown
by metal-organic vapor-phase epitaxy (MOVPE) [12-14].
Typical electrolytes that are used are NaOH aqueous solu-
tions or a mixture of H,SO4 and H3PO4. A Pt counter elec-
trode (CE) was used as the cathode. The anode was GaN or
AlGaN epi surface with ohmic contact to the CE via an exter-
nal circuit. UV irradiation and etching voltage were applied
simultaneously for anodic oxidation.
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Fig. 1 Schematic representation of typical
photoelectrochemical etching of GaN [12].
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Figure 2 shows typical PEC etching results of fabricating
deep trenches of a n-GaN epilayer on a n-GaN substrate. It
has a high aspect ratio and the estimated etching selectivity
against a Ti etching mask was >400 (~20 pm/50 nm); these
are excellent features of PEC etching. The photolumines-
cence intensity, as shown in Fig. 3, was almost the same value
for both the non-etched and etched surfaces, which indicates
that PEC etching is a low-damage GaN etching process [11].
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As a second example, Fig. 4 shows the relationship between
the etching depth and etching time in a AlGaN/GaN HEMT
sample on a SiC substrate [13]. The etching depth was pro-
portional with respect to the etching time. In addition, PEC
etching for a Aly25Gag7sN(25 nm)/GaN HEMT structure ex-
hibits the self-termination feature owing to the limitation of
photo-hole generation in the AlGaN-layer. The etching depth
was controlled by the light intensity. These features indicate
that PEC etching is preferable for fabricating recessed-gate
structures. The PEC-etched recessed—Al,O3/AlGaN metal—
oxide—semiconductor (MOS) also shows a low interface state
[14]. Furthermore, successful simple contactless PEC etching
was also achieved, wherein the sample was dipped into the
electrolyte under UV irradiation [16].
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Fig. 2 SEM images of PEC-etched cylinder-shaped (a) and cav-
ity-shaped GaN patterns (b) [12].
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Fig. 3 PL spectra of non-etched and etched surface of n-GaN

epilayer on n-GaN substrate [11].
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Fig. 4 Relationship between the etching depth and etching time

in the AlGaN layer of Alo25Gao.7sN(25 nm)/GaN HEMT struc-
tures [13].
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Fig. 5 Schematic representation of simple contactless
photoelectrochemical etching of GaN [15].

3. Conclusions

PEC etching of GaN, which is based on photo-assisted
anodic oxidation, has good controllability of the etching
depth owing to Faraday’s laws. Further, it has a high etching
selectivity against etching masks. The etched surface also ex-
hibited little damage, which was confirmed by photolumines-
cence and by a low interface state of the MOS structure. Sim-
ple contactless PEC etching was successfully achieved,
wherein the sample was dipped into the electrolyte under UV
irradiation. These results indicate that PEC etching is a pref-

erable low-damage wet etching process for GaN power and
RF devices.
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