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Abstract 

Body Coupled Communication (BCC) utilizes human 

body itself as a communication medium to provide con-

nectivity between nodes on or around the body. Though 

the BCC is an attractive Body Area Network (BAN) meth-

odology, it suffers with several challenges to overcome to 

be commercially viable. These challenges include 1) vary-

ing channel gain over space, time and subject, 2) varying 

environment, and 3) stringent power consumption re-

quirements. This work reviews the issues related to BCC, 

and several efforts to overcome such issues. An example 

application that benefits from BCC is also discussed.  

 

1. Introduction 

Body Area Network (BAN) [1] forms a network among 
on/in body sensors to realizing healthcare, medical or multi-
media applications. Conventional RF-based wireless stand-
ards such as Bluetooth, Medical Implant Communication Ser-
vice (MICS) are not ideal for medical/healthcare BAN appli-
cations due to their limited data rate, high power consumption, 
and most importantly, body shadowing effects: the human 
body absorbs the majority of energy in GHz range [2]; the hu-
man body acts as a blockage or impeding medium. Textile-
based [3] or conductive thread-based [4] wearable BAN are 
also possible methods, but these limit the deployment location 
since the network is based on wiring. Body Coupled Commu-
nication (BCC) utilizes the human body itself as a transmis-
sion medium, and it provides higher data rate (~10Mbps), has 
low power consumption and is free from Line-of-Sight (LoS) 
requirement [3]. Despite these superior properties, BCC still 
faces some practical issues: 1) varying channel gain over space, 
time and subject, 2) varying environment such as posture, 
swaying contacts and interference, and 3) stringent power con-
sumption requirements. Recent BCC works are therefore fo-
cusing on these practical issues. This paper reviews the meth-
ods and efforts in recent works that lead to BCC to become a 
commercially viable option. 

2. Body Coupled Communication Methods 

There are largely three mechanisms in BCC: 1) galvanic, 

2) magnetic resonance and 3) capacitive coupling (Fig. 1).  
 

 
Fig. 1. BCC mechanism: (a) Galvanic [6], (b) Magnetic Resonance 

0 and (c) Capacitive coupling [8]. 

A. Galvanic Coupling 

Both TX and RX have two electrodes each (Fig. 1 (a)); the 

differential signal then induces a galvanic current that propa-

gates through the skin [6]. This method is resilient to external 

environmental variation and reliable; however, due to its high 

path-loss, it is suitable for short range with limited data rate 

(~100 kbps). This method is a good choice if communication 

distance is less than a foot, and a stable communication is nec-

essary.  

B. Magnetic Resonance Coupling 

Magnetic field travels through biological tissue better than 
electric field does 0. The magnetic resonant coupling exploits 
this property by adopting two resonant coils around the body 
as shown in Fig. 1. The coils at TX will generate the magnetic 
flux, which will be captured at the RX coil. As far as the mag-
netic resonance is kept constant, this is an energy efficient 
method. One limitation here is, however, to have the magnetic 
flux through the body, a coil should be surrounding the TX/RX 
points (as shown in Fig. 1 (b)); this limits the wearing/attach-
ing points. For example, it is difficult to have a TX or RX 
around the chest or head. Also, maintaining resonance under 
motion artifact is another challenge. Regardless of these, if 
communication is on a limb, and if placing a coil around the 
TX and RX points is not a burden, the magnetic resonance 
coupling would be a good option.  

C. Capacitive Coupling [8] 

TX and RX each have a signal electrode each (no explicit 

ground electrode is present, Fig. 1 (c)). The forward path is 

through the body, and return path is formed by parasitic 

ground of TX / RX as well as body in between (Fig. 2). The 

channel gain measurement shows that the human body shows 

largely a band-pass characteristic, with channel gain is rela-

tively flat at around 40-120MHz. Since there is only signal 

electrode with a floating ground, signal shorting is 

significantly reduced, and less pathloss is present; therefore, 

more energy is received from RX when compared to galvanic 

signaling. However, the return path is formed by parasitic 

ground, which varies over posture, subject, and electrode at-

tachment. This results in a huge fluctuation in RX receiving 

signal strength, and is a challenge. The capacitive coupling is 

preferred choice if transmission distance should cover from 

an entire body, or the form factor requirement does not allow 

two electrodes (galvanic) or a coil around the point (magnetic 

resonance).  
 

3. Coping with BCC Challenges 

(a) (b) (c)
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All three BCC mechanisms are affected by varying chan-
nel gain and environmental change, although there is a trade-
off between coverage over channel reliability. In specific, 
channel gain may vary over the subject, posture, and commu-
nication distance; this is especially the case for the capacitive 
coupling, where return path relies on the parasitic ground, and 
hence the ground amount changes significantly  (ground ef-
fect [2]). Therefore, without proper compensation, the BCC 
will be corrupted significantly. To overcome such issues, the 
TX power and the RX sensitivity can be adapted with a feed-
back. We can also adopt OFDM at a slight power consump-
tion penalty, or utilize Hybrid (or Pseudo) OFDM method 
[2],[9] (Fig. 3). It transmits baseband OFDM symbol over an 
adaptive frequency hopping FSK to mitigate the varying par-
asitic ground and varying channel gain over time.  

It is also important to note that in galvanic and capacitive 
coupling, electrodes are attached to the human body, and the 
attaching strength affects the channel gain. To make matters 
worse, the electrode attachment strength may well change 
over time, since many BCC applications are mobile and wear-
able. The RC-Relaxed Contact Impedance Monitor (RRCIM) 
can mitigate this by detecting the contact impedance change 
with minimal power consumption [9]. In the band of interest, 
the capacitive component dominates the skin-electrode im-
pedance; the weaker the contact, the lower the capacitance 
value. The RRCIM combined with an RX gain adaptation ef-
fectively mitigates the skin-electrode impedance change issue. 

4. BCC BAN Applications 

    BCC BAN covers a variety of domains, ranging from 

healthcare to multimedia applications. Especially, when an 

application requires communication around the head area, the 

conventional RF suffers due to body shadowing effect [2]; it 

is shown that on conventional RF, the binaural hearing aid 

system needs to use 80% of its power consumption on trans-

ceiver only. BCC can mitigate this issue effectively. Another 

application that can benefit from BCC is healthcare. All three 

BCC methods are free from LoS requirement, which is a must 

for a healthcare application; as an example, a patient should 

not have his/her data lost due to body shadowing effect.  

5. Conclusions 

In this paper, we reviewed and compared three different BCC 

mechanisms for BAN. Galvanic coupling has the least cover-

age but has the strength in stable and reliable communication 

strength. Magnetic coupling can cover more area with a stable 

connection, but requires coils surrounding the TX/RX are, 

which may not always be possible. Lastly, capacitive cou-

pling has the largest coverage (the whole body area), but with 

varying channel pathloss. Therefore, proper circuit level com-

pensation is required. 
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Fig. 4. Skin-electrode impedance monitoring circuit [9]. 

 

 

   

 
Fig. 2 (left) Simplified model of capacitive BCC, and (right) 

the channel gain measurement [3]. 
 

 
Fig. 3. Pseudo OFDM Transceiver [2].  
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