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Abstract 

This paper presents a cascode single-inductor-dual-

output (SIDO) boost converter fabricated in 65nm CMOS 

process for RF wireless power transfer (WPT) receiver. 

2.5V I/O transistor cascode PFETs are used for 4.2V Li-

ion battery output while 2.5V cascode NFETs are newly 

used for 1V output to supply low voltage internal control 

circuit. By using NFETs, 1V output with 5V tolerance can 

be achieved. Measurement results show conversion effi-

ciency of 87% at PIN=7mW. 

1. Introduction 

  For Internet of Things (IoTs) applications, such as sensor 

network for industrial equipment in factory automation, RF 

WPT is attractive because power supply wiring to the sensors 

can be eliminated. Considering the distance from TX to the 

sensor (RX) of about 1~10m, 5.7GHz is chosen for RF [1]. 

Fig. 1 shows a simplified schematic diagram of the RF WPT 

system. To receive -10~15dBm range RF power in the RX 

power management circuit, 65nm CMOS process is chosen. 

Sub-100nm process is also favorable to reduce the power con-

sumption of the control circuit since low voltage (1V) tran-

sistor is available. On the other hand, since a Li-ion battery is 

used for the output, 4.2V tolerance is required at the power 

stage of the boost converter. From these requirements, this 

paper proposes a SIDO boost converter that supplies 1V out-

put to the internal control circuit and Li-ion battery compati-

ble voltage output. Although the output voltage configuration 

is similar to [2], the proposed power stage does not use 5V 

thick oxide transistor but use cascode 2.5V I/O transistors. 

2. Proposed Cascode SIDO Boost Converter Design 

  Fig. 2 shows the block diagram of the proposed boost con-

verter which consists of the proposed cascode SIDO power 

stage, low power control circuit including clock generator 

(CLK generator) and VMID regulator. The first output VOUT1 

generates 1V power supply voltage for the control circuit and 

the second output VBAT is connected to a Li-ion battery. Using 

1V power supply contributes to low power consumption of 

the control circuit. For voltage regulation, clocked compara-

tors are used instead of continuous-time comparators to re-

duce the quiescent current. Fig. 3(a) shows the detail of the 

cascode SIDO power stage and Figs. 3(b)-3(d) depict its op-

eration states. By cascoding 2.5V I/O transistors, 5V toler-

ance is obtained where VMID=1/2VBAT is generated at VMID 

regulator. It should be noted that the transistors connected to 

VOUT1 is 2.5V NFETs. If 2.5V PFETs are used, the gate volt-

age requires VBAT to turn off when VX node becomes VBAT (up 

to 4.2V), which now exceeds the gate oxide voltage tolerance 

because VOUT1 is 1V. Also, the body of these NFETs are al-

ways connected to a lower potential by the low voltage selec-

tor to prevent unintended body diode conduction. Fig. 4 

shows the VMID regulator where VMID is regulated between VH 

and VL (VH-VL is set to 50mV at VBAT=4.2V) by turning on 

and off PMID or NMID transistors at a frequency of MID. 

  Table 1 and Fig. 5 show SIDO control policy and wave-

forms, respectively. If VOUT1 is lower than the reference volt-

age, power is supplied to VOUT1 prior to VBAT in order to ensure 

proper control operation. Fig. 6 shows the simple configura-

tion and operation of CLK generator. The clocks provided to 

the clocked comparators are generated from low power 

1.6MHz oscillator followed by logic circuits. To realize fre-

quency-sweeping voltage monitor based on [3] for input reg-

ulation, IN rising edge frequency is halved every cycle so that 

IN becomes slower as VIN_DC rise becomes slower when input 

DC power is low. The power consumption of the control cir-

cuits and power stage driver automatically reduces when the 

input power is low because the operation frequency goes 

down. 

3. Measurement Results 

  The proposed boost converter is fabricated by 65nm 

CMOS process. Fig. 7 shows chip microphotograph and pa-

rameters of the external components. The die occupies an area 

of 1.1×1.1 mm2. Fig. 8 shows the measured waveforms of the 

input voltage VIN_DC, VBAT, VX, and IN. It can be confirmed 

that the boost converter is operating properly. Fig. 9 plots the 

measured power conversion efficiency versus ILOAD at 

VBAT=4V. The maximum efficiency of the proposed boost 

converter is 87% at PIN=7mW and ILOAD=1.6mA. The total 

power consumption of the boost converter is 824µW at PIN of 

7mW and the power consumption of the 1V supply control 

circuit is 24µW. Table 2 shows a comparison with the recent 

boost converters that are aimed for energy harvesting. 

4. Conclusion 

  This paper proposes a SIDO boost converter fabricated in 

65nm CMOS process for RF WPT receiver. In order to meet 

the specifications for low power control, RF integration and 

high voltage output, the SIDO architecture and cascode 

power stage are proposed. The proposed circuit is success-

fully demonstrated and achieves 87% power conversion effi-

ciency at measurement. 
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Fig. 1 Microwave RF wireless power transfer system and requirements for the 
DC-DC converter.  

Fig. 2 Block diagram of the proposed circuit. 

Fig. 3 (a) Schematic of the proposed cascode SIDO power stage, (b) N1 
and N2 on state, (c) N3 and N4 on state, (d) P1 and P2 on state.  

Fig. 4 Schematic of VMID regulator. 
Fig. 5 Timing diagram of the SIDO control. 

Table 1 State for SIDO control. 

Fig. 6 Schematic and timing diagram of the frequency sweeping control. 

Fig. 7 Chip micrograph. 
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Fig. 8 Measured oscilloscope waveforms. 

Fig. 9 Measured power conversion efficiency versus ILOAD. 

Table 2 Comparison with the recent works. 
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