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Abstract 
We have proposed p-TFET operation in a bilayer TFET 
composed of an n-type oxide-semiconductor and p-type 
group-IV semiconductor. TCAD simulation has 
predicted a symmetric n-/p- operations. Moreover, we 
have experimentally demonstrated the p-TFET 
operation by using a ZnSnO/SiGe-OI TFET under Si 
back gate operation. Both n- and p-TFET operations are 
also observed in an identical device by changing the gate 
electrodes between the top and back ones.  
1. Introduction 

A bilayer tunneling field effect transistor (TFET) is one of 
attractive device structures to realize high on-state current 
(Ion) and low sub-threshold swing (S.S.) thanks to vertical 
band-to-band tunneling (BTBT) over the entire region of the 
tunneling junction [1]. Recently, we have proposed a bilayer 
TFET composed of the hetero-tunneling junction of an 
n-type oxide semiconductor (n-OS) and a p-type group-IV 
semiconductor (p-IV) with type-II energy band alignment 
and have experimentally demonstrated the operation [2]. We 
have also presented the improvement of the sub-threshold 
characteristics by using an amorphous ZnSnO channel [3,4]. 

One of remaining challenges to apply the n-OS/p-IV 
bilayer TFETs into real circuits is to realize p-type TFET 
operation for complementary TFET circuits. In this study, 
therefore, we present key ideas to realize p-TFETs and 
demonstrate the p-TFET operation by combination of the 
present bilayer TFET structure with the SiGe-on-insulator 
(SiGeOI) technology [5,6] 
2. Concept of complementary bilayer TFET 

An essence to determine the TFET operation type, n-type 
or p-type, is the order of staking the two layers, n-OS and 
p-IV, beneath the gate stack (Fig. 1). For n-TFETs already 
proposed, positive gate bias (Vg) bends the surface potential 
of the n-OS channel and electrons in the p-IV source can 
tunnel into the n-OS channel. Symmetrically, for p-TFETs, 
negative Vg bends the surface potential of the p-IV channel 
and electrons in the p-IV channel can tunnel into the n-OS 
source. Here, the remaining holes flow toward the drain, 
resulting in the p-TFET operation. The complementary 
TFETs can be realized not only the planar way but also 3D 
stack structures as shown in Fig. 2. The 3D stacked same 
n-OS/p-IV TFET structures with front and back gates allow 
us to realize the complementary TFET with compact layout. 
Actually, TCAD simulation shows that a hetero-junction 
composed of same materials of n-ZnO and p-Ge with both 
thicknesses of 10 nm can realize n- and p-TFET operations 
simultaneously (Figs. 3-5). It is found here that the 
symmetrical operation of n- and p-TFETs is realized by an 
appropriate choice of work function of the gate metal (Fig. 
5). These results indicate that complementary TFET 
operation can be realized by using a single n-OS/p-IV 
bilayer structure with an appropriate thickness and work 
function of the gate metal. 
3. Device fabrication 

In order to demonstrate the proposed p-TFET operation, 
bilayer TFETs composed of p-type SiGeOI and n-type 
ZnSnO layers were fabricated (Fig. 6). The SiGe layer with 
the thickness of 15 nm and the Ge fraction of 59% (Fig. 7) 
was fabricated by the Ge condensation technique [5,6]. The 

BOX thickness was 25 nm. The ZnSnO layer with the Zn/Sn 
ratio of 1.5 and the thickness of 12 nm was deposited by 
PLD. Then, a W/Al2O3 top gate stack was formed. The 
appropriate plasma and thermal treatments were performed 
to improve the interface quality [7]. Ni and ITO contact 
electrodes were formed on SiGe and ITO layers, 
respectively. Fig. 8 shows the cross sectional TEM images 
around the ZnSnO/SiGe tunneling junction. The stacked 
layers of amorphous ZnSnO and single-crystal SiGe are 
observed (Fig. 8(b)). On the other hand, the interfacial layer 
between ZnSnO and SiGe layers looks thicker (~3 nm) than 
that of the ZnSnO/Si junction (~1.5 nm) [4], attributable to 
easier oxidation of Ge. We have confirmed the steep on/off 
switching with almost no hysteresis in a reference ZnSnO/Si 
TFET fabricated on a bulk Si source (Fig. 9). 
4. Demonstration of n- and p-type bilayer TFETs 

Both n- and p-TFET operations in a single ZnSnO/SiGe 
bilayer TFET were experimentally examined by selecting 
the appropriate gate electrodes, top or back one. Fig. 10 
shows the measurement configurations of the terminals of 
TFETs. For p-TFET operation, under the conditions of 
negative bias to the p-SiGe drain and ground to n-ZnSnO 
source, the Si substrate is used as the gate electrode with the 
W top gate floating. For n-TFET operation, on the other 
hand, under the conditions of positive bias to the n-ZnSnO 
drain and ground to the p-SiGe source, the W electrode is 
used as the gate electrode with the Si back-gate floating. 

The electrical characteristics of n- and p-TFETs are 
shown in Figs. 11 and 12. It is found that the clear on/off 
switching is obtained in the p-TFET controlled by the back 
gate (Fig. 11(a)). This is the first experimental 
demonstration of the p-TFET operation of bilayer TFETs. 
On the other hand, S.S. is as high as 900 mV/dec. This high 
S.S. value could not be simply explained by the thick back 
gate insulator. Improvement of the interfacial quality at the 
SiGe/BOX interface is expected to provide lower S.S. We 
have also confirmed the n-TFET operation in the same 
device (Fig. 11(b)). The steep on/off switching, which is 
comparable to in the reference ZnSnO/Si TFET, is realized 
even in the TFET with the SiGeOI source. The minimum 
S.S. value is slightly higher (~ 91 mV/dec.). 

Furthermore, the achieved Ion value of the p-TFET is in 
the similar level to that of n-TFET, as expected TCAD 
simulation. This symmetric Ion is attractive for the 
complementary TFET circuits. On the other hand, the higher 
off-current of p-TFET, which is probably due to the 
ambipolar band-to-band tunneling in the SiGe layer under 
the large positive Vg, needs to be suppressed for low-power 
application with low off-state leakage currents. 
5. Conclusions 

In this study, we have presented the key idea to realize 
p-TFET operation in n-OS/p-IV bilayer TFETs and have 
found through TCAD simulation that a symmetric n-/p- 
operations can be expected under the same TFET structure. 
Furthermore, we have experimentally demonstrated the 
p-TFET operation in ZnSnO/SiGe-OI TFET with the Si 
back gate and have realized the n- and p-TFET operations in 
the single ZnSnO/SiGe TFET. 
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Fig. 3  Bilayer TFET structure of 
(a) pTFET and (b) nTFET for TCAD 
simulation. 

Fig. 4  (Simulated) Energy band diagram of 
the tunneling junction during (a) pTFET 
operation and (b) nTFET operation 

Fig. 5  (Simulated) Id-Vg of pTFET 
(back-gate) and nTFET (top-gate) with 
various work functions. 

Fig. 1  Concept of (a) n- and (b) p- bilayer TFETs.  
In pTFET, negative Vg on p-channel generates holes at 
the channel surface after vertical BTBT, while positive 
Vg on n-channel generates electrons in nTFET. 

Fig. 6  Bilayer TFET 
device fabrication flow 
with n-ZnSnO and 
p-SiGeOI layers. 
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Fig. 2  Compact 3D-integration of n-/p- bilayer 
TFETs into CMOS circuit, by utilizing 3D stack 
SiGe-on-insulator and back gate technologies. 

Fig. 8  Cross-sectional TEM images of 
n-ZnSnO/p-SiGe tunneling junction. 
Amorphous ZnSnO and single-crystal 
SiGe (Ge=59%) layers are observed. 

Fig. 7  Raman 
spectra of SiGeOI to 
evaluate Ge fraction. 

Fig. 11  (Measured) Id-Vg of (a) p- and 
(b) n- TFETs. 
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(b) nTFET demonstrations used in this study. 
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