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Abstract 
Since the proposals of spin Hall effect and topological 

insulators, many topological materials have been found, 
even among known materials, and they exhibit novel 
properties unique to topological materials. We explain re-
cent developments on topological aspects of materials sci-
ence, and discuss perspectives for future applications.  
 
1. Introduction 

Topological materials have been attracting much interest 
in condensed matter physics. The first and well-known exam-
ple of topological systems is the quantum Hall system [1]. 
When we apply a strong magnetic field onto a two-dimen-
sional electron gas, the Hall conductivity is quantized and 
topological chiral edge states appear at the edges of the sys-
tem. Nonetheless, because it requires a strong electric field, 
possibilities for its applications are limited.  

Meanwhile, theoretical proposals of the spin Hall effect 
[2,3] have triggered new possibilities for topological systems 
[4]. Prior to these proposals, Hall effects and topological 
phases were thought to be possible only when the time-rever-
sal symmetry is broken, i.e. when a magnetic field or mag-
netism is present in the system. In contrast, the spin Hall ef-
fect is realized in nonmagnetic metals and semiconductors, 
and the topological insulators are found in various narrow-
gap semiconductors. In my presentation, we show recent de-
velopments in the field of topological materials, and discuss 
perspectives for future applications.  
 
2. Berry curvature and spin Hall effect 

Through the studies on Hall effect, it has been established 
that the equations of motion of electrons in a crystal have a 
term proportional to the Berry curvature. The equations of 
motion for electrons in a crystal are written as  
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where 𝒙𝒙  is the position, 𝒌𝒌  is the wavevector, 𝐸𝐸𝑛𝑛  is the 
electron energy in the 𝑛𝑛th band, and 𝑬𝑬 is the electric field. 
𝛀𝛀𝑛𝑛(𝒌𝒌) is the quantity called Berry curvature, defined as 
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If we ignore the second term of Eq. (1), the equations become 
the well-known semiclassical equations of motion for elec-
trons. The Berry curvature term comes from a multi-band ef-
fect, and it leads to the motion of electrons which is perpen-
dicular to the electric field, i.e. the Hall effect.  

The Hall effect occurs only when the time-reversal sym-
metry is broken, i.e. in the presence of magnetism or magnetic 
field. Meanwhile, one can apply the equations of motion 
(1)(2) to nonmagnetic systems, which leads to various types 
of Hall effects such as spin Hall effect [2,3]. Namely, in a 
material with spin-orbit coupling, the Berry curvature de-
pends on spin directions, and it leads to the spin-dependent 
transverse velocity, i.e. spin current induced by the electric 
field (Fig. 1). This is expected for a broad range of metals and 
doped semiconductors with spin-orbit coupling. Indeed, it has 
been observed in various materials.  
  

 
 
 
 
 
 
 

Fig. 1 Schematic figure of the spin Hall effect 
 
3. Topological materials 

By extending this idea to an insulator, one reaches a con-
cept of topological insulators [4]. Schematic figures are 
shown in Fig.2 for (a) two-dimensional and (b) three-dimen-
sional topological insulators. In these topological insulators, 
the bulk is insulating, while the edges/surfaces are metallic, 
carrying a pure spin current. Namely in equilibrium, up-spins 
and down-spins are persistently flowing along the edges/sur-
faces of the system.  

These topological insulators are characterized by the Z2 
topological invariant, which can be calculated from the band 
structure calculation of the material. In addition to the topo-
logical insulator with the time-reversal symmetry, there are 
various topological insulators due to some spatial symmetries, 
called topological crystalline insulators. At present, many 
materials are known to belong to these types of topological 
materials.  
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These topological insulators show novel physical proper-
ties. For example, in the topological insulators, the edge can 
be regarded as a quantum wire supporting a pure spin current, 
and shows a quantized conductance, as has been observed in 
experiments. Another example is the quantum anomalous 
Hall effect [5]. By doping magnetic impurities into a topolog-
ical insulator, one can realize a quantum Hall system due to 
ferromagnetism, without an external magnetic field. In such 
quantum anomalous Hall systems, the bulk is insulating and 
the edges are chiral, with their flow directions depend on the 
direction of the magnetization. This allows a switching of 
conduction paths by controlling the magnetic domains. 

 
 
 
 
 
 
 
 
 

Fig. 2 Schematic figures of topological insulators for (a) 2D and (b) 
3D. 
 
4. Topological semimetals 

Through the studies of topological insulators, proposals of 
topological band structures even in metals have been made. 
Such metals are called topological semimetals or topological 
metals. There are various types of topological semimetals, 
some of which are shown in Fig. 3. In Fig. 3, the dispersions 
of topological semimetals are shown schematically, with the 
vertical axis being the energy and the horizontal axes are the 
wavevector k. In these topological semimetals, the valence 
bands and the conduction bands are degenerate at a point or a 
line in the k space, which is possible only when there is some 
reason from topology or symmetry in k space. For example, 
in the Weyl semimetal [6-8] (Fig.3(a)), the band gap closes at 
a point called a Weyl node, and this Weyl node is known as a 
monopole or an antimonopole for the Berry curvature. This 
topological nature protects the Weyl node from lifting its de-
generacy.  
 

Fig. 3 Schematic band structures of topological semimetals. (a) 
Weyl semimetal, (b) Dirac semimetal and (c) nodal-line semimetal.  

 
Because this degeneracy comes from topology and/or 

symmetry, one can control the band structure in a unique way, 
different from conventional materials. For example, in a su-

perlattice with a topological semimetal with a normal insula-
tor, various phases appear, and their phases are controlled in 
a unique way. For example, a switching behavior in a super-
lattice of the phase-change materials can be attributed to this 
topological nature of the materials [9].  
 
4. Perspective for future applications 

Unlike the quantum Hall system, which requires a strong 
magnetic field, the important aspect of the topological insu-
lators and semimetals is that they can be realized without any 
external field, and there are many candidate materials to be 
used. Recently, a high-throughput search on topological ma-
terials has become available, based on materials databases, 
and now a large number of topological materials have been 
known. By a proper choice of materials and by introducing 
various types of external factors onto the materials, such as 
doping, alloying, change of system geometries such as thin 
films, quantum wells, and so on, one can have a broad range 
of controllability. Together with the novel physical properties 
of the system, topological materials promise various potential 
applications.  
 
5. Conclusions 

Topological materials turn out to be unexpectedly ubiqui-
tous, including well known materials. Researches on topolog-
ical materials have been opening a new frontier for materials 
science and for device applications. At present, the research 
is still in the fundamental level, but considering the rapid pro-
gress in this field in the past decade, we expect a yet more 
surprising progress in the coming decade.  
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