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Abstract 

We investigate the biaxial stress effect on the electron 

transport properties at SiO2/4H-SiC interfaces. The elec-

tron mobility is calculated based on the phonon scattering 

theory. The results indicate that the strain induced poten-

tial disturbances might act as scattering centers that af-

fect electron mobility.  

 

1. Introduction 

In silicon-based metal-oxide-semiconductor field effect-

transistors (MOSFETs), strain engineering has been widely 

employed to improve electron mobilities in highly scaled de-

vices[1]. However, so far, in SiC-MOSFETs, strain engineer-

ing has not been able to effectively improve the electronic 

transmission performance. Therefore, a fundamental study of 

the carrier scattering mechanism is needed to understand the 

relationship between strain at the SiC surface and carrier 

transport properties in the inversion layer of SiC-MOSFETs. 

It is known that strain-induced stress of lattice usually 

causes the modification of the effective mass and/or varia-

tions of the scattering rate, which affects the carrier 

transport[2]. However, the relationship between the biaxial 

stress at SiO2/4H-SiC interface and the electron mobility is 

still unclear. In addition, due to the potential disturbances in-

duced by the lattice vibration, the stress-induced electron 

transport is mainly limited by phonon scattering. Thus, in this 

work, the phonon limited electron mobility was calculated 

based on the acoustic and optical phonon scattering.  

 

2. Theoretical background 

2.1 phonon scattering probability 

   Using the Fermi golden rule, since the total electrons in-

teract with acoustic phonon by the deformation potential 

coupling, the scattering probability for intravalley processes 

(ac) can be given as follows: 

 

𝑆𝑎𝑐(𝑘, 𝑘`) =
2𝜋𝐸2𝑘𝐵𝑇

𝑉ℏ𝜌𝑐𝐿
2 𝛿[𝜖(𝑘`) − 𝜖(𝑘)]                          (1) 

Where E is the deformation-potential tensor, 𝑐𝐿 is the lon-

gitudinal velocity, 𝜌 is the mass density of the crystal, and 

V is the volume of the crystal.  

For 4H-SiC, where the conduction band minimum occurs 

at a point either inside the Brillouin zone or at the edge, and 

there are several equivalent conduction band valleys. In 

these cases, electrons can be scattered from one valley to an-

other via a large wave-vector phonon. And it has been found 

to play an important role in phonon-limited electron mobil-

ity[3]. The scattering probability for intervalley processes 

caused by optical phonons (op) is  

 

𝑆𝑜𝑝(𝑘, 𝑘`) =
𝑍𝑓𝜋𝐷𝑖𝑓

2

𝑉ℏ𝜔𝑖𝑓
(𝑛𝑖𝑓

𝑜𝑝
+

1

2
∓

1

2
) 𝛿[𝜀𝑓(𝑘`) − 𝜀𝑖(𝑘)

∓ ℏ𝜔𝑖𝑓]                                             (2) 

Where 𝐷𝑖𝑓 is the intervalley deformation potential (coupling 

constants), ℏ𝜔𝑖𝑓 is the intervalley phonon energy. 

 

2.2 Boltzmann transport equation in relaxation time approx-

imation 

For 4H-SiC, the band minima at the M points one contracts 

with three full ellipsoids. In an ellipsoidal energy band, both 

the effective mass and the relaxation time are anisotropic in 

principle. However, it seems that in the case of 4H–SiC, 

where the anisotropy of the band is not very conspicuous[4]. 

Thus, in our calculation, we use the isotropic relaxation time 

𝜏  dependent on the energy into the scattering term in the 

Boltzmann transport equation. Therefore, we can relate the 

relaxation time to the scattering probability 𝑆(𝑘, 𝑘`), which 

calculated by using the Fermi golden rule. The relaxation time 

is given as follows[3]: 

 

1

𝜏
= ∫

1 − 𝑓0
`

1 − 𝑓0
𝑆(𝑘, 𝑘`)(1 −

𝜏`𝑣`𝐹

𝜏𝑣𝐹
)𝑑𝑘`                         (3) 

Here, 𝑓0 is the Fermi-Dirac distribution. 𝜐 is drift electron 

velocity, and F is electric field strength. 

In general, this is a rather complex integral to solve. How-

ever, it becomes considerably simplified for certain simple 

cases. In the case of acoustic phonon scattering, which can be 

regarded as isotropic parabolic bands and elastic scattering. 

From Eqs. (1), (3) the relaxation time is represented as  

 

1

𝜏
=

E2kBT𝑚𝑑
∗ 3

2⁄ (2ε)
1

2⁄

πℏ4ρcL
2 .                                                (4) 

In the case of intervalley optical phonon scattering, from Eqs. 
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(2), (3) the relaxation time is represented by 

1

𝜏
=

𝑍𝑓𝐷𝑖𝑓
2𝑚𝑑

∗3
2⁄ (2 (𝜀 ± ℏ𝜔𝑖𝑓))

1
2⁄

2𝜋ℏ3𝜌𝜔𝑖𝑓
(𝑛𝜔 +

1

2
∓

1

2
) (5) 

Where 𝑛𝜔 = 1

𝑒𝑥𝑝
(ℏ𝜔

𝑘𝐵𝑇⁄ )
− 1

⁄ , 𝑚𝑑
∗ = (𝑚1

∗𝑚2
∗ 𝑚3

∗ )
1

3⁄  is 

the density-of-states mass, 𝜀 is electron energy, and 𝑍𝑓is the 

number of final valleys available for scattering, in our calcu-

lation, 𝑍𝑓=4 for 4H-SiC crystal. 

The relaxation time will depend upon the energy of the 

electron. Thus, it is important to address the appropriate av-

eraging procedure for 𝜏 to be used in macroscopic quantities 

such as mobility. The averaging relaxation time 〈𝜏〉 is given 

as 

〈𝜏〉 =
2

3𝑘𝐵𝑇

∫ 𝜀3/2 ∙ 𝜏 ∙ 𝑒𝑥𝑝 − (
𝜀

𝑘𝐵𝑇
) 𝑑𝜀

∫ 𝜀1/2 ∙ 𝑒𝑥𝑝 − (
𝜀

𝑘𝐵𝑇
) 𝑑𝜀

.                      (6) 

3. Calculation and conclusions 

Normally, electron mobility is calculated using 𝜇 =
𝑒〈𝜏〉 𝑚∗⁄ . However, for 4H-SiC, the constant-energy sur-

faces of 4H-SiC in k-space is an ellipsoid. By averaging all 

the ellipsoids, the conductivity mass was given as follows, 

1

𝑚𝑐
∗

=
1

3
(

1

𝑚𝑥
∗

+
1

𝑚𝑦
∗

+
1

𝑚𝑧
∗
)                                                 (7) 

which was used as the mobility effective mass in electron 

mobility calculation. In addition, as mentioned before, 𝜏 is 

the relaxation times for an electron having the kinetic energy 

due to phonon scattering. Thus, through the dependence of 

𝜏 on 𝑚𝑑
∗ , the phonon-limited electron mobility in the stress 

relaxed 4H-SiC crystal is represented by Eqs.(4), (5), (6) 

and (7). 

 

𝜇 =
𝑒 ∙ 〈𝜏(𝑚𝑑

∗ )〉

𝑚𝑐
∗

                                                                  (8) 

Where the density of states mass defined as 𝑚𝑑
∗ =

(𝑚𝑀Γ
∗ 𝑚𝑀𝐾

∗ 𝑚𝑀𝐿
∗ )

1
3⁄  for the directions (M→Γ, M→K and 

M→L). 𝑚𝑐
∗ = 2(

1

𝑚MΓ
∗ +

1

𝑚𝑀𝐾
∗ )−1  is the conduction-band ef-

fective mass of the in-plane (M→Γ, M→K).     

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  First Brillouin zone and changes upon biaxial stress. Left: 

the equilibrium hexagonal first Brillouin zone and the special k-

points Γ, M, K. Right: The first Brillouin zone after applying a biax-

ial stress of in-plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Fig 2 The phonon-limited electron mobility is stated as a function of 
the temperature of unstrained and strained. 

 

Then, the electron mobility was calculated in the strained 

4H-SiC using a strain value as ∆𝑎
𝑎⁄ = 1.5%  ( ∆𝑎 : the 

change in the lattice vector). Fig. 1 shows the Brillouin zone 

in the hexagonal plane for both relaxed case (Left) and 

strained case (Right). The conduction band minimum for 4H-

SiC is located at point M of Brillouin zone. Although the bi-

axial stress is applied, the crystal symmetry does not change 

in the x-y plane when the surface is located at c plane. Con-

sequently, the biaxial strain has no effect on lifting the band 

degeneracy, since the states are all on the x-y plane. However, 

the band-gap reduction for biaxially strained SiC has been re-

ported as ∆𝐸𝑔𝑎𝑝 = −0.04𝑒𝑉  for ∆𝑎
𝑎⁄ = 1.5% .[5] Fig 2 

displays the electron mobilities of relaxed and strained SiC as 

a function of temperature. A significant reduction in the elec-

tron mobility in strained SiC has been evident from the figure. 

Although the experimentally obtained strain value at the 

SiO2/SiC interface is much smaller than 1.5%, yet the strain 

induced potential disturbances might act as scattering centers 

to affect the electron mobility in Fig. 2. 

 
References 
[1] Lee ML, Fitzgerald EA, Bulsara MT, Currie MT, Lochtefeld A. 

Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-

semiconductor field-effect transistors. journal of applied physics. 

2005;97:1. 

[2] Sun Y, Thompson SE, Nishida T. Strain effect in semiconductors: 

theory and device applications: Springer Science & Business Media; 

2009. 

[3] Singh J. Electronic and optoelectronic properties of 

semiconductor structures: Cambridge University Press; 2007. 

[4] Son N, Chen W, Kordina O, Konstantinov A, Monemar B, Janzen 

E, et al. Electron effective masses in 4H SiC. Applied physics letters. 

1995;66:1074-6. 

[5] Steel FM, Tuttle BR, Shen X, Pantelides ST. Effects of strain on 

the electrical properties of silicon carbide. Journal of Applied 

Physics. 2013;114:013702. 

 

Γ 

K 

M 

k 

Γ 

K 

M 

𝐾` 

𝑀` 

k 

x 

y 

𝝁𝒑𝒉𝒐𝒏𝒐𝒏 =
𝒆 ∙ 𝝉(𝒎𝒅𝒐𝒔ۦ

∗ )ۧ

𝒎𝒄
∗

 

 

- 736 -


