Demonstration of n-MOSFET operation and internal charge analysis of SiO₂/Al₂O₃ gate dielectric on (111) oriented 3C-SiC Ryusei Oka¹, Keisuke Yamamoto¹, Dong Wang¹, Hiroshi Nakashima¹, Shigeomi Hishiki² and Keisuke Kawamura^{1,2} ¹Kyushu University 6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan Phone: +81-92-583-7292 E-mail: yamamoto.keisuke.380@m.kyushu-u.ac.jp ²Air Water Inc. 2290-1, Toyoshinatakibe, Azumino, Nagano, 399-8204, Japan #### **Abstract** We fabricated n-MOSFET with SiO₂/Al₂O₃ gate dielectric on (111) oriented 3C-SiC substrate. Fabricated device operated as inversion mode MOSFET successfully. We also analyzed fixed charge and interfacial dipole of SiO₂/Al₂O₃ gate dielectric on (111) n-type 3C-SiC. Both the SiO₂ and Al₂O₃ have negative fixed charge and the gate stack includes large dipole which shifts flatband voltage to negative direction. These results may open a way for application of 3C-SiC electronic device. #### 1. Introduction Silicon carbide (SiC) has been attracting much interest as a material for high efficient and small size power devices due to its high breakdown field. Among some polytypes of SiC, (111) oriented 3C-SiC can be grown on Si (111) surface [1]. Therefore, 3C-SiC/Si hetero-epitaxial substrate has a potential for on-chip hetero-integrated electronic device. In order to apply high feasibility of 3C-SiC for electronic devices, it is necessary to form good dielectric on 3C-SiC with high interfacial quality for MOS gate and surface passivation layer. We have succeeded fabrication of 3C-SiC MOS capacitor with high interfacial quality (interface state density: $D_{\rm it} < 10^{11} \, \rm cm^{-1}$ ²eV⁻¹) by using SiO₂/Al₂O₃ stacked gate dielectric (Fig. 1) [2]. The MOS capacitor showed slightly negative flatband voltage $(V_{\rm fb})$. In order to switch MOSFET by appropriate supply voltage, the $V_{\rm fb}$ and threshold voltage control is important. Concerning layer stacked gate dielectric, fixed charge (Q_{fix}) in each layer and interface dipole (δ_{dipole}) influence V_{fb} . In this article, firstly we demonstrated operation of 3C-SiC n-MOSFET with this gate dielectric. Secondly, we investigated $Q_{\rm fix}$ and $\delta_{\rm dipole}$ in SiO₂/Al₂O₃ dielectric on 3C-SiC in anticipation of $V_{\rm th}$ control. ## 2. 3C-SiC n-MOSFET operation The substrate used for n-MOSFET was (111) oriented p-type 3C-SiC epitaxially grown on p-Si (111) substrate. Hole concentration of 3C-SiC is on the order of 10^{16} cm⁻³. Fabrication overview is summarized in Fig. 2. Source/drain (S/D) region was formed by multistep ion implantation of P (30-180 keV) and subsequent activation annealing at 1200° C. The gate stack was formed by the same method with our former study [2]. After substrate cleaning, Al_2O_3 by ALD and SiO_2 by ECR plasma sputtering were deposited as a gate dielectric. Next, post deposition annealing (PDA) was performed at 500° C in N_2 ambient. Al electrode was formed by thermal evaporation, and it was patterned for gate electrode by lithography and wet etching. Figures 3(a) and 3(b) show I_D - V_D and I_D - V_G characteristics of the fabricated MOSFET, respectively. They showed typical MOSFET operation curve, thus the SiO₂/Al₂O₃ gate dielectric successfully controlled inversion carrier. However, leakage current at S/D junction is large. S/D formation by ion implantation must be optimized in the next step. ## 3. Fixed charge ($Q_{\rm fix}$), interface dipole ($\delta_{ m dipole}$) analysis The substrate used for charge analysis in the gate stack was (111) oriented n-type 3C-SiC epitaxially grown on n-Si (111) substrate. Donor (nitrogen) concentration of 3C-SiC is on the order of 10^{16} cm⁻³. In this study, we fabricated lateral MOS capacitors and the fabrication detail is the same with MOSFET fabrication. In Fig. 4, the principle of $Q_{\rm fix}$ and $\delta_{\rm dipole}$ evaluation is illustrated. If non-mobile charges in the gate stack are centralized at interfaces and bulk charges can be negligible, $V_{\rm fb}$ can be expressed by the equation (1) in Fig. 4 and $V_{\rm fb}$ -EOT plot shows liner relationship [3]. By changing SiO₂ thickness (EOT₁) and Al₂O₃ thickness (EOT₂), we can evaluate $Q_{\rm fix1}$ and $Q_{\rm fix2}$ from the slope of $V_{\rm fb}$ -EOT₁ and $V_{\rm fb}$ -EOT₂ plot. Vertical intercept corresponds $\delta_{\rm dipole}$. Figure 5(b) shows high frequency (100 kHz) C-V characteristics for samples with various Al₂O₃ thickness. Typical ntype C-V curves were obtained for all samples, and V_{fb} shifts to positive direction with increasing EOT. V_{fb}-EOT₂ plots for these samples are summarized in Fig. 5(c). It shows good liner relationship which means the effect of bulk charges are weak. Qfix2 located at Al2O3/SiC interface are obtained as - 2.77×10^{11} cm⁻² from the slope. Similarly, *C-V* characteristics and $V_{\rm FB}$ -EOT₁ plot for the samples with various SiO₂ thickness are shown in Figs. 6(b) and 6(c), respectively. From the slope of Fig. 6(c) and Q_{fix2} , Q_{fix1} located at SiO₂/Al₂O₃ interface was obtained as -5.96×10¹¹ cm⁻². By using workfunctions of 3C-SiC (4.21 eV) [4] and Al (4.08 eV), δ_{dipole} is calculated as -0.99 eV. Analyzed charge distribution is illustrated in Fig. 7. Since the dipole strength is relatively large, material (especially gate electrode) and process should be well designed for device application. ### 4. Conclusions We demonstrated operation of n-MOSFET with ${\rm SiO_2/Al_2O_3}$ gate dielectric on (111) oriented 3C-SiC. We also analyzed internal charge of the same gate dielectric. The ${\rm SiO_2}$ and ${\rm Al_2O_3}$ have negative $Q_{\rm fix}$, and the gate stack includes large dipole of -0.99 eV. This large dipole should be considered for device application. Fig. 1 (a) C-V characteristics and (b) D_{it} distributions for 3C-SiC MOS capacitors with various structures [2]. Fig. 2 Fabrication procedure and cross sectional illustration of 3C-SiC n-MOSFET. $V_{fb} = \Phi_M - \Phi_S + \delta_{dipole} - \frac{Q_{fix2}}{\varepsilon_0 \varepsilon_{SiO_2}} (EOT_1 + EOT_2) - \frac{Q_{fix1}}{\varepsilon_0 \varepsilon_{SiO_2}} EOT_1$ $\Phi_M, \Phi_S; \text{ workfunction of the gate electrode and the semiconductor}$ $\Delta_{\text{apole: total dipole in the gate stack}$ $Q_{\text{fix.}} EOT_1; \text{ fixed charge and EOT of the top gate dielectric}$ $Q_{\text{fix.}} EOT_2; \text{ fixed charge and EOT of the bottom gate dielectric}$ $Q_{\text{fix.}} EOT_2; \text{ fixed charge and EOT of the bottom gate dielectric}$ $Q_{\text{fix.}} EOT_2; \text{ fixed charge and EOT of the bottom gate dielectric}$ $Q_{\text{fix.}} EOT_2; \text{ fixed charge and EOT of the bottom gate dielectric}$ $Q_{\text{fix.}} EOT_2; \text{ fixed charge and EOT of the bottom gate dielectric}$ $Q_{\text{fix.}} EOT_2; \text{ fixed charge and EOT of the bottom gate dielectric}$ $Q_{\text{fix.}} EOT_2; \text{ fixed charge and EOT of the bottom gate dielectric}$ $Q_{\text{fix.}} EOT_2; \text{ fixed charge and EOT of the bottom gate dielectric}$ $Q_{\text{fix.}} EOT_2; \text{ fixed charge and EOT of the bottom gate dielectric}$ $Q_{\text{fix.}} EOT_2; \text{ fixed charge and EOT of the bottom gate dielectric}$ $Q_{\text{fix.}} EOT_2; \text{ fixed charge and EOT of the bottom gate dielectric}$ $Q_{\text{fix.}} EOT_2; \text{ fixed charge and EOT of the bottom gate dielectric}$ $Q_{\text{fix.}} EOT_3; \text{ fixed charge and EOT of the bottom gate dielectric}$ $Q_{\text{fix.}} EOT_3; \text{ fixed charge and EOT of the bottom gate dielectric}$ $Q_{\text{fix.}} EOT_3; \text{ fixed charge and EOT of the bottom gate dielectric}$ $Q_{\text{fix.}} EOT_3; \text{ fixed charge and EOT of the bottom gate dielectric}$ $Q_{\text{fix.}} EOT_3; \text{ fixed charge and EOT of the bottom gate dielectric}$ $Q_{\text{fix.}} EOT_3; \text{ fixed charge and EOT of the bottom gate dielectric}$ $Q_{\text{fix.}} EOT_3; \text{ fixed charge and EOT of the bottom gate dielectric}$ $Q_{\text{fix.}} EOT_3; \text{ fixed charge and EOT of the bottom gate dielectric}$ $Q_{\text{fix.}} EOT_3; \text{ fixed charge and EOT of the bottom gate dielectric}$ $Q_{\text{fix.}} EOT_3; \text{ fixed charge and EOT of the bottom gate dielectric}$ Fig. 3 (a) I_D - V_D and (b) I_D - V_G characteristics of fabricated 3C-SiC n-MOSFET with SiO₂/Al₂O₃ gate dielectric. Fig. 4 Sample cross-sectional illustration and $V_{\rm FB}$ equation. Fig. 5 (a) Cross sectional illustration of samples with various Al₂O₃ thickness, (b) high frequency C-V characteristics, and (c) V_{fb}-EOT₂ plot for Q_{fix2} and δ _{dipole} estimation. Fig. 6 (a) Cross sectional illustration of samples with various SiO₂ thickness, (b) high frequency C-V characteristics, and (c) V_{fb}-EOT₁ plot for Q_{fix1} estimation. Fig. 7 Analyzed charge distribution in this study. **Acknowledgement** Prof. Baba in CMS, Kyushu institute of technology kindly supported for ion implantation. #### References - [1] S. Nishino et al., Appl. Phys. Lett., 42 (1983) 460. - [2] K. Yamamoto et al., SSDM2018, p. 871. - [3] H. Kamata et al., Appl. Phys. Lett., 110 (2017) 102106. - [4] J. Kuriplach et al., Phys. Rev. B, 59 (1999) 1948.