SiC Quantum Dots in Si-Oxide Layer Fabricated by Double Hot-Si⁺/C⁺-Ion Implantation Technique T. Mizuno, R. Kanazawa, T. Aoki, and T. Sameshima* Kanagawa Univ., Hiratsuka, Japan (mizuno@kanagawa-u.ac.jp), * Tokyo Univ. of Agric. and Tech., Koganei, Japan #### Abstract We experimentally studied SiC quantum nano-dots in Sioxide layer fabricated by double hot-Si⁺/C⁺ ion implantation technique (Si⁺/C⁺-OX), comparing with SiC dots by single hot-C+ ion implanted oxide (C+-OX) and amorphous-Si layers (C+aSi). STEM analysis shows that SiC dots were successfully formed in Si⁺/C⁺-OX. The Raman peaks of T- and D-bands of a-carbon (a-C), as well as TO-mode of Si-C vibration, are observed in Si⁺/C⁺-OX, which is the direct verification of SiC and a-C formation. We demonstrated that the maximum PL intensity I_{PL} of Si⁺/C⁺-OX is approximately 1.7 and 8.7 times larger than those of C⁺-aSi and C⁺-OX, respectively. The PL peak energy of Si⁺/C⁺-OX (2.5eV) is lower than that of C⁺-aSi (3.1eV). The I_{PL} of Si⁺/C⁺-OX shows the rapid increase after N₂ annealing, which is possibly attributable to the PL quantum efficiency enhancement of SiC dot. ### I. Introduction Using the self-cluster effects of ion-implanted C atoms in Si [1], 3C-SiC and hexagonal-SiC (H-SiC) nano-dots (diameter R≈2nm) can be easily formed even in amorphous-Si layer (a-Si) as well as polysilicon (poly-Si) and crystal-Si (c-Si) by hot-C+-ion implantation technique [2], [3]. Thus, the crystal structure of Si is not essential for the SiC dot formation by hot-C+-ion implantation. We demonstrated the very large bandgap E_G ($\approx 3 \text{ eV}$) ($\equiv \text{peak PL}$ wavelength λ_{PL} of 400nm) and very strong PL emission I_{PL} in the near-UV/visible regions (>400nm) from indirect-bandgap SiC dots, which is possibly attributable to free exciton recombination of excited electrons in SiC dots [4]. However, since the SiC dots with large E_G are embedded in Si layer with small E_G ($\approx 1.1 \text{ eV}$), the SiC dot in Si layer is not a quantum dot, resulting in small PL quantum efficiency for visible Si-based photonic devices. Thus, it is strongly required to realize a quantum SiC dot embedded in much larger E_G material, such as SiO₂ with $E_G \approx 9 \text{eV}$, and thus the PL quantum efficiency of quantum SiC dots can be improved by bandto-band recombination of excited electrons. In this work, we experimentally studied the SiC quantum dots embedded in SiO₂, using double hot-Si⁺/C⁺-ion implantation into a surface-SiO₂ (Si⁺/C⁺-OX) on bulk-Si. We successfully improved the PL intensity *I_{PL}* of quantum SiC dots in Si⁺/C⁺-OX, compared to those of single hot-C⁺-ion implanted oxide (C⁺-OX) and a-Si layers (C⁺-aSi). Moreover, an a-carbon (a-C) in C⁺-OX also showed very broad PL spectrum, as reported [5], but the IPL was very weak. II. Experiment Procedure To form a SiC dot in surface-SiO2 (SOX) layer, Si atoms as well as C atoms are required to coexist in SOX. SiC quantum dots in SOX were fabricated by double hot-ion implantations of Si⁺ (Fig.1-(I)(b)) and C⁺ ion (Fig.1-(I)(c)) into the SOX layer on (100) bulk-Si substrate at substrate temperature T (600°C) after forming 140-nm thick SOX (Fig.1-(I)(a)), using low and high hot-ion dose conditions of Si⁺ (Ds) and C⁺-ion doses (Dc) for Si⁺/C⁺-OX (**Table-1**). As a result, the peak concentrations of Si and C atoms at low dose conditions, simulated by Monte-Carlo simulator SRIM [6], are to be approximately 7×10^{21} and 5×10^{21} cm⁻³, respectively (**Fig.2**). Post N₂ annealing was carried out at annealing temperature $T_N = 1000^{\circ}$ C for various annealing time t_N ($0 < t_N \le 60$ min), to poly-crystallize implanted Si atoms in SOX (**Fig.1-(I)(d)**, because a-Si can be polycrystallized [3]. C+-OX structure was also formed in SOX (**Fig.1-(II)(a)**), using the single hot-C⁺ ion implantation (**Fig.1-(II)(b)**) and post N₂ annealing (**Fig.1-(II)(c)**). SiC dots in C⁺-aSi were also fabricated by hot-C⁺-ion implantation into a-Si layer [3]. PL and Raman properties of three structures (Table-1) were measured at room temperatrure, where the excitation laser energy and diameter were 3.8eV and 1 μ m, respectively. The PL spectrum in the wide range of λ_{PL} from the UV to NIR regions was calibrated using a standard illuminant. ## III. Results and Discussions ## A. Material Structures of Si⁺/C⁺-OX and C⁺-OX Since SiC dots are local Si-rich areas in SOX, SiC dot areas in HAADF-STEM image for Si⁺/C⁺-OX shows bright areas. Actually, STEM image shows that many SiC dots with $R \approx 2$ -4nm (bright areas encircled in Fig. 3) are successfully observed below the 30nm depth from the SOX surface, whose C content in the SiC-dot layer is estimated to higher than 2at.% (Fig.2). However, in Si layer, SiCdots were not formed, because of very low C-content (<1.5at.%) (Fig.2). It is noted that UV-Raman analysis of Si⁺/C⁺-OX (**Fig.4**) shows the strong two peaks of the T-band around 1100cm⁻¹ [7] and D-band of C-C vibration and no G-band peak, which suggests that a-C in Si^+/C^+ -OX mainly consists of diamond-like carbon (sp^3 site) [5]. However, the TO-mode (I_{TO}) of Si-C vibration is very weak, compared with those of C⁺-aSi. Moreover, with increasing the ion dose, the Raman intensities I_R of both T- and D-bands increase, and especially the D-band intensity enhancement is much larger than the T-band enhancement (Figs. **5(a) and 5(b)).** Moreover, all I_R -peaks decrease with increasing t_N under low ion dose conditions in $t_N \le 30$ min (**Fig. 5(b)**), whereas I_D , I_T , and I_{TO} peaks at high dose conditions are almost independent of t_N . Thus, at low ion dose conditions, it is possible that a-C area reduces after N₂ annealing. On the other hand, C+-OX shows the typical Raman spectrum of a-C including the G-band of graphite (sp^2 site) (**Fig.6**). The I_D of Si⁺/C⁺-OX is much smaller than of that of C⁺-OX, which indirectly suggests that some C atoms of Si⁺/C⁺-OX bind to Si atoms, resulting in SiC dot formation. However, the TO mode of Si-C vibration cannot been observed in C+-OX, as expected. B. PL Properties of Si+/C+-OX and C+-OX Firstly, we discuss the PL properties under low ion dose conditions. We successfully demonstrated that the PL intensity I_{PL} of Si⁺/C⁺-OX is much larger than that of C⁺-aSi, and the peak PL energy *E_{PH}* exhibits a red-shift from approximately 3.1eV of C⁺-aSi to 2.5 eV (**Fig.7**). The broad PL of C⁺-OX is also observed, but the PL intensity is one order of magnitude smaller than that of Si⁺/C⁺ OX even under the same $D_C(Fig.7)$ The I_{PL} of Si⁺/C⁺-OX is remarkably enhanced after N₂ annealing (**Fig.8**), and drastically increase with increasing t_N under $t_N \le 30$ min. As a result, the maximum I_{PL} of Si⁺/C⁺-OX is approximately 1.7 and 8.7 times larger than those of C⁺-aSi and C⁺-OX, respectively. The I_{PL} enhancement factor ΔI_{PL} compared with I_{PL} at t_N =0 amounts to approximately 9.5 at t_N =30min, which is much larger than the ΔI_{PL} of C⁺-aSi (2.8) and C⁺-OX (2.2). The I_{PL} of Si⁺/C⁺-OX negatively correlates to the I_R of C-C and Si-C vibrations (**Fig.5(b)**), which suggests that the PL quantum efficiency of SiC dots increases after N_2 annealing. In addition, the I_{PL} of C⁺-OX is still lower than the I_{PL} of Si⁺/C⁺-OX is spite of increasing t_N , which indicates that the I_{PL} of a-C in C⁺-OX is much smaller than that of SiC dots. Secondly, we discuss the hot-ion dose dependence of PL properties of Si⁺/C⁺-OX. In spite of increasing D_C , the I_{PL} of Si^+/C^+ -OX is reduced, which is approximately 85% of that at low $D_C(\mathbf{Fig.9(a)})$. However, the PL spectrum line shape is independent of $D_{\mathcal{C}}(\mathbf{Fig.9(a)})$. In addition, the t_N dependence of the I_{PL} improvement of Si^+/C^+ -OX at high D_C is very slow, and the maximum I_{PL} improvement can be achieved at $t_N=240$ min, whereas the peak- t_N under low D_C is only 30min (**Fig.9(b)**). Thus, it is strongly required to optimize the hot-ion dose to improve the I_{PL} of Si⁺/C⁺-OX. ## IV. Conclusion In this work, we experimentally studied SiC quantum dots in SOX fabricated by the double hot-Si $^+$ /C $^+$ implantation into an oxide layer. We demonstrated very strong PL intensity of Si⁺/C⁺-OX in the UV/visible regions, compared with that of C⁺-aSi and C⁺-OX. Since a semiconductor layer is not essential for forming Si⁺/C⁺-OX, Si⁺/C⁺-OX technique is very promising for low-cost visible photonic devices. Acknowledgement: This work was partially supported by KAKENHI (17K06359). References: [1] T.Mizuno, JJAP 57, 04FB03, 2018. [2] T.Mizuno, Abst. SNW, p.121, 2018. [3] T.Mizuno, JJAP 58, SBBJ01, 2019. [4] J.Fan, Silicon Carbide Nanostructures (Springer), 2014. [5] Rusli, JAP 80, 2998, 1996. [6] J.F.Ziegler, http://www.srim.org/. [7] C. Casiraghi, Phys. Rev. B 72, 085401, 2005. | Structures | $D_S \ (\times 10^{16} \text{cm}^{-2})$ | $D_C \ (\times 10^{16} \text{cm}^{-2})$ | |-------------------------------------|---|---| | Si ⁺ /C ⁺ -OX | 6 | 4 | | | 10 | 6 | | C+-OX | 0 | 4 | | C+-aSi | 0 | 4 | Table-1 Hot-ion dose conditions for three structures Fig.1 Fabrication steps for (I) Si^*/C^*-OX by double hot- Si^*/C^* -ion-implantation into SOX and (II) C^*-OX by single hot- C^* -ion-implantation into SOX. In (I), after (a) forming 140-nm thick SiO_2 on (100) bulk-Si substrate, (b) hot- Si^* -ions and (c) the following hot- C^* -ions were implanted into the SOX layer at $T=600^\circ C$. (d) Post N_2 annealing was carried out at $T_N=1000^\circ C$ for annealing time t_N . (II) shows that C^*-OX is also fabricated by the same processes for Si^*/C^*-OX without hot- Si^* -ion implantation of (I)-(b). **Fig.2** Implanted Si (dashed line) and C atom (solid line) depth profiles simulated by SRIM [6], where D_s =6×10¹⁶ cm⁻², D_c =4×10¹⁶ cm⁻², and T=25°C. The left and right vertical axes show the concentration and C-content, respectively. Fig.3 HAADF-STEM images of the cross section of SiC dots (bright areas) encircled in SOX of Si⁺/C⁺-OX, where D_S =6×10¹⁶cm⁻², D_C =4×10¹⁶ cm⁻², and t_N =10min. SiC $D_S = 0.810^{10} \text{cm}^2$, $D_C = 4.810^{10} \text{ cm}^2$, and $t_R = 10 \text{min}$. SiC dots in SOX are the Si rich area, resulting in the bright areas in HAADF-STEM image. Many SiC dots are formed below 30nm depth from the SOX surface shown as an arrow of SiC-Dot Layer. **Fig.4** Raman *Ds*=6×10¹⁶cm⁻² spectra of Si⁺/C⁺-OX (blue line) at D_S =6×10¹⁶cm⁻² and C⁺-aSi (brown line), where D_C =4×10¹⁶ cm⁻² and t_N =0. The arrows of Si⁺/C⁺-OX show the D and T bands of C-C vibration, and the arrows of C+-aSi show the G band of C-C vibration and the TO mode of Si-C vibration. Fig.5 (a) D_C dependence of Raman spectra of Si⁺/C⁺-OX under low $(D_S=6\times10^{16} \text{cm}^{-2} \text{ and } D_C=4\times10^{16} \text{ cm}^{-2} \text{ (solid)}$ line)) and high ion dose conditions ($D_S=1\times10^{17}$ cm⁻² and $D_C=6\times10^{16}$ cm⁻² (dotted line)), where $t_N=0$. dependence of I_D (solid lines), I_T (dashed lines), and I_{TO} peaks (dotted lines) under low (circles) and high ion dose conditions (rhombi). At low ion dose, both I_D and I_T decrease after N_2 annealing at $t_N \le 30$ min. decreases and is almost zero at $t_N \ge 30$ min. I_{TO} also Fig.6 Raman spectra of Si+/C+-OX (blue line) at D_S =6×10¹⁶cm⁻² and C⁺-OX (green line), where D_C =4×10¹⁶ cm⁻² and t_N =0. The arrows show the G (observed in only C+-OX). D and T bands of C-C vibration **Fig.7** PL spectra of three structures of Si⁺/C⁺-OX at D_s =6×10¹⁶ cm⁻² (solid line), C⁺-aSi (dashed line), and C⁺-OX (dotted line) after N₂ annealing, where D_C =4×10¹⁶ cm⁻². t_N of Si⁺/C⁺-OX, C⁺-aSi, and C⁺-OX are 30, 10, and 30min under the maximum I_{PL} conditions, respectively. **Fig.8** t_N dependence of peak- I_{PL} of Si⁺/C⁺-OX at D_S =6×10¹⁶ cm⁻² (circles), C⁺-aSi (triangles), and C⁺-OX (squares), where $D_C=4\times10^{16}$ cm⁻². **Fig.9** (a) D_C dependence of PL spectra under low $(D_S=6\times10^{16}\text{cm}^{-2}\text{ and }D_C=4\times10^{16}\text{cm}^{-2}\text{ (solid line))}$ and high ion dose conditions ($D_S=1\times10^{17}$ cm⁻² and $D_C=6\times10^{16}$ cm⁻² (dotted line)), where $t_N=30$ min. (b) t_N dependence of peak-IPL of Si+/C+-OX at low (circles) and high ion doses (rhombi).