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Abstract

Phonon-assisted tunneling spectra in GeSn Esaki diodes
were demonstrated to determine the direct-to-indirect
bandgap transition in GeSn alloys at 4 K. The phonon signals
are clearly observed in Ge and strained Geo92Sng s diodes,
while for relaxed Geo.02Sno.os devices, there were no phonon
signatures. The results suggest that the indirect-to-direct
bandgap transition occurs at a lower Sn fraction of < 8% in
relaxed GeSn than in strained GeSn (> 8%).

1. Introduction

GeSn alloys attract a lot of attentions for optoelectronic
and electronic device applications due to its direct bandgap
nature [1] and high carrier mobility [2], respectively. GeSn
alloy becomes a direct-bandgap material as its Sn fraction is
above 6 ~ 12 %, depending on the strain condition [3]. Most
of the prior work on the transition of indirect-to-direct
bandgap in GeSn were done by photoluminescence measure-
ments [4]. In this work, the transition was determined by pho-
non-assisted tunneling spectra in GeSn Esaki diodes. Our re-
sults show that the phonon-assisted tunneling processes oc-
curs in Ge and strained Geo92Sn s tunnel diodes while for
relaxed Geo.92Sng s devices, phonons do not participate the
tunneling process. This further verifies that the indirect-to-di-
rect bandgap transition occurs at a lower Sn fraction in the
relaxed GeSn than in strained GeSn [5].

2. Experiment

Epitaxial structures of Ge and GeSn Esaki diodes are
shown in Fig. 1. The epitaxial films were deposited by re-
duced pressure chemical vapor deposition (RPCVD) at low
temperatures to prevent Sn segregation and precipitates. The
precursors for GeSn and Ge growth were Ge;Hg and SnCly
with BoHg and PH3 as in-situ dopant gases. For all structures,
a 100-nm Ge buffer layer was grown on a Si substrate, fol-
lowed by in-situ H, annealing at 800 °C for the strain relaxa-
tion. Heavily-doped p- and n-type layers were subsequently
grown to enable band-to-band tunneling. For the relaxed
GeSn tunnel diode, the active layers were grown on an addi-
tional GeSn relaxed buffer of
Geo.885n0.12/Geo.92Sn0.08/Geo.96Sn0.04 superlattices on top of the
relaxed Ge layer [6]. The relaxation rate of the Geo92Sno.os
active layer was 92% determined by reciprocal space map-
ping (RSM). The sub-micron devices were fabricated by e-
beam lithography and dry etching. The Ti/Au metal contacts
were deposited by e-beam evaporation. Negative differential
resistance (NDR) was clearly observed for all devices, which

is crucial for the observation of phonon peaks at low temper-
atures. The highest peak-to-valley ratios achieved in the re-
laxed GeSn tunnel diode are 15 and 52 at room temperature
and 4 K, respectively [7].

3. Result and Discussion

For indirect-bandgap tunnel diodes, the tunneling process
involves the participation of phonons to compensate the mo-
mentum difference between electrons in the conduction band
and holes in the valence band (Fig. 2). The phonon-assisted
tunneling can only be observed in I-V curves at low temper-
atures due to less thermal broadening [8]. Phonon spectra of
tunneling diodes were extracted by the second derivatives of
I-V curves at small biases [9]. In practice, large noises would
shadow the phonon signatures extracted from the second de-
rivatives of I-V curves. Thus, we followed the procedures in
[10] by a harmonic detection system for the extraction of pho-
non signals.

Fig. 3 shows the spectrum of the second derivative of I-V
characteristics of a commercial Ge tunnel diode (1N3717) at
4 K to justify the measurement setup and extraction proce-
dures. The positions of phonon signals are consistent with the
phonon energies of Ge [9]. Fig. 4 shows the measured 1-V
curves, measured dl/dV-V curves, and extracted phonon
spectra of the Ge and GeSn devices at 4 K. For epitaxial Ge
devices, several phonon peaks in the second derivative spec-
trum were observed. However, the voltages of phonon peaks
are slightly larger than the corresponding phonon peaks for a
commercial diode (Fig. 3). This could be due to the series re-
sistance effect [11], shifting the phonon peaks to higher volt-
ages. For the strained Geo.92Sno .oz device (Fig. 4b), the phonon
peaks can be clearly observed in the second derivative spec-
trum, where the series resistance effect is stronger for the
peak positions at higher voltages due to the stronger effects
of series resistance. As a result, strained Geo.02Sno.0s remains
an indirect-bandgap material, which is consistent with the
photoluminescence results [4]. On the other hand, there was
no phonon signal extracted for the relaxed Geg.92Sng og device
(Fig. 5). This result suggests that relaxed Gep92Sno s is a di-
rect-bandgap material, which is consistent with the theoreti-
cal calculations [5] and experimental results [12].

3. Conclusions

In this work, the tunneling spectra of Ge and GeSn Esaki
diodes at 4 K were demonstrated to determine the indirect-to-
direct bandgap transition for GeSn alloys. For the Ge and
strained Geo.92Sng.0s diodes, phonon signatures were clearly
observed, while for the relaxed Geo.92Sng s devices, there
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were no observable phonon signals, which suggests that the
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