High Performance Negative Capacitance Field-Effect Transistor Featuring Low Off-State Current, High On/Off Current Ratio, and Steep Sub-60 mV/dec Swing

Chien Liu¹, Hsuan-Han Chen¹, Yi-Chun Tung², Wei-Chun Wang², Bing-Yang Shih³, Szu-Yen Hsiung³, Shih-An Wang⁴, Yu-Chi Fan⁵, Tsung-Ming Lee⁵, Chien-Liang Lin⁵, Wu-Ching Chou¹, Chun-Hu Cheng⁴, Hsiao-Hsuan Hsu^{5,*}

¹Dept. of Electro-physics, National Chiao Tung University, Hsinchu, Taiwan
²Institute of Photonic System, National Chiao Tung University, Hsinchu, Taiwan
³Dept. of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan
⁴Dept. of Mechatronic Engineering, National Taiwan Normal University, Taipei, Taiwan
⁵Department of Materials & Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan
*Phone: +886-2-2771-2171 E-mail: <a href="https://www.hhttps://www.hhttps://www.https://wwwwwwww.https://www.https://www.https://www.https://www.https://

Abstract

In this work, we demonstrated that the 5nm-thick $HfAlO_x$ NCFET with optimized Al doping can achieve a minimum 33 mV/dec SS, an ultralow I_{off} of 7.44 fA/µm, and a high I_{on}/I_{off} ratio of 1.9×10^8 . The experimental results reveal that well-controlled Al doping in HfAlO_x not only reduces off-state leakage of transistor, but also improves ferroelectric NC effect to implement a sub-60mV/dec switching under a favorably low sub-1 voltage. The HfAlO_x NCFET shows the great potential for the application of low power logic devices.

1. Introduction

Due to rigorous requirement of ultralow power consumption for modern electronic devices, it is necessary to lower switching energy of transistor. Recently, the negative capacitance transistors (NCFETs) employing ferroelectric hafnium-oxide-based films had been proposed, which can offer the sub-60 mV/dec subthreshold swing (SS) to further reduce V_{DD} [1]-[7]. Furthermore, the leakage issue caused by physical thickness scaling become more significant for implementing the NC effect. However, there is still lack of experimental results for reducing trap-related leakage originated from ferroelectric film and simultaneously implementing sub-60mV/dec operation. Here, we successfully achieve an excellent transistor performance in a NCFET based on a 5nm-thick HfAlO_x film with 8% Al doping. Furthermore, a steep sub-35 mV/dec SS and a sub-10 fA/µm leakage can be simultaneously reached under a favorably low overdrive voltage $(V_{GS}-V_T)$ of <1 V.

2. Device Fabrication

First, a 1-nm chemical oxide was grown on *p*-type silicon substrates as a buffer oxide. Then, a 5-nm-thick $HfAIO_x$ films with an Al/Hf ratio of 3% and 8% were deposited by atomic layer deposition (ALD). In order to improve the film quality of gate stack, a remote fluorine plasma treatment was performed. After that, a TaN stressed metal was then deposited on HfAIO_x film [3], [4]. Finally, the S/D region were implanted and activated by rapid thermal annealing (RTA). The HRTEM cross-section image of 5nm-thick HfAIO_x NCFETs gate stack is shown in Fig. 1.

Fig. 1 HRTEM cross-section image of 5nm-thick HfAlO_x NCFET.

3. Results and Discussion

Fig. 2(a) and Fig. 2(b) show the output drain current versus drain voltage $(I_{DS}-V_{DS})$ and transfer drain current versus gate voltage $(I_{DS}-V_{GS})$ characteristics of 5nm-thick HfAlO_x NCFET with Al doping of 3% and 8%, respectively. Compared to sample using 3% Al doping, the transfer characteristic of HfAlO_x NCFET using 8% Al doping shows a much lower off-state current (I_{off}) of 7.44 fA/µm, significantly improved by ~2 order of magnitude. Furthermore, a large I_{on}/I_{off} ratio of 1.9×10^8 also can be obtained in HfAlO_x NCFET with 8% Al doping. This is because the phase transition from monoclinic to orthorhombic phase would be enhanced through an increase of Al content. The appropriate Al doping can effectively reduce the shallow traps of HfA-IO_x dielectric [3] and also boosts the formation of ferroelectric crystalline phase.

Fig. 2 (a) Output I_{DS} - V_{DS} , and (b) transfer I_{DS} - V_{GS} characteristics of 5nm-thick HfAlO_x NCFET with 3% and 8% Al doping.

Fig. 3 shows the $SS-V_{OV}$ and the $SS-I_{DS}$ characteristics extracted from Fig. 2(b). Compared to SS value of 71 mV/dec measured in control sample with 3% Al doping, the 5nm-thick HfAlO_x NCFET with proper 8% Al doping exhibits a steep SS_{min} of 33 mV/dec and a sub-60 mV/dec-SS range spanning over 2 decade of I_{DS} . The excellent SS property is mainly ascribed to ferroelectric NC effect. Besides, the observed ultralow leakage is mainly originated from proper Al doping and fluorine remote plasma passivation.

Fig. 3 SS as the function of gate overdrive voltage (V_{OV}) and I_{DS} of 5nm-thick HfAlO_x NCFET with 3% and 8% Al doping.

Fig. 4(a) and Fig. 4(b) show I_{DS} - V_{GS} and SS characteristics (measured by various V_{DS}) of 5nm-thick HfAlO_x NCFET with 8% Al doping. As shown in Fig. 4(b), the NC switching with sub-60mV/dec SS can be maintained from V_{DS} =0.2V to 0.8V due to an ultralow I_{off} . The experimental results reveal that an appropriate Al doping into HfO₂ not only significantly reduces leakage current but also enhances the ferroelectric negative capacitance effect. Table 1 summarizes the important features of state-of-the-art HfAlO_x NCFETs. Our NCFET employing a thinner 5-nm-thick HfAlO_x and 1-nm-thick ultrathin oxide exhibits the excellent transistor characteristics even comparable to recently published NCFET with a 10-nm-thick HfAlO_x [4].

Fig. 4 (a) I_{DS} - V_{GS} and (b) SS_{min} - V_{DS} characteristics of 5nm-thick HfAlO_x NCFET with 8%-Al doping.

Table I Comparison fo	state-of-the-art	HfAlO _v	NCFETs
-----------------------	------------------	--------------------	--------

NCFETs	HfAlO _x NCFET [4]	HfAlO _x NCFET (This work)
FE Thickness	10 nm	5nm
IL Thickness	3nm	1nm
SS _{min} (mV/dec)	24	33
I_{off} (fA/µm)	4	7.44
I_{on}/I_{off}	2×10^{8}	1.9×10 ⁸

4. Conclusions

We can understand that the well-controlled Al doping and additional remote-plasma defect passivation significantly affects transistor characteristics of HfAlO_x NCFET, especially in a scaled thickness. An ultralow I_{off} of 7.44 fA/µm, a steep SS_{min} of 33mV/dec and a >10⁸ I_{on}/I_{off} ratio can be achieved in our scaled HfAlO_x NCFET under optimization.

References

- [1] M. H. Lee et al, IEEE IEDM Tech. Dig. (2015) 616.
- [2] M. H. Lee et al, IEEE IEDM Tech. Dig. (2016) 306.
- [3] C. C. Fan et al, Symp. on VLSI Technology (2018) 139.
- [4] C. C. Fan et al, IEEE IEDM Tech. Dig. (2017) 561.
- [5] Y. C. Chiu *et al*, *IEEE Trans. Electron Dev.* **64** (2017) 3498
- [6] C. H. Cheng et al, Phys. Status Solidi-RRL 11 (2017) 1700098
- [7] Y. C. Chiu et al, Phys. Status Solidi-RRL 11 (2017) 1600368