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Abstract 

We have simulated the LTP/LTD performance of 90nm 

split-gate SuperFlash® memory cell by Sentaurus TCAD 

tools and constructed a two-layer perceptron to do pattern 

recognition based on the 59 available current state values de-

rived from the LTP/LTD simulation data. The recognition ac-

curacy achieves 100% which is consistent with the original 

network. These results are useful for the extraction of more 

current states and the application in complex analog neuro-

morphic networks. 

 

1. Introduction 

Non-volatile floating gate memory has been used as a 

synaptic weight storage cell in analog neuromorphic net-

works for more than 30 years [1]. Compared with the "synap-

tic transistor" made by standard CMOS technology (~103 𝐹2, 

where F is the minimum feature size and large area leads to 

large time delay and power consumption) [2-4], the non-vol-

atile floating gate memory can be scaled down to F ~ 20nm 

after highly optimized [5], and the current state of a single 

cell can be individually and accurately adjusted in the array, 

which is very suitable for the application of adjustable syn-

apse in analog neuromorphic networks. 

The advanced 3rd generation SuperFlash® cell (ESF3) 

adopt the split gate design, compared with the stacked gate 

cell, it shows very fast, efficient, and low power Source-Side 

CHE program [6]. It uses Poly-to-poly FN tunneling erase, 

low power read, without the over-erase problem and allow 

simpler program-erase algorithms design [7]. Currently, 

ESF3 mainly serves the general single-chip microcomputer 

as well as the automotive and smart card markets. Because of 

the excellent performance and reliability, this paper re-

searches a hot application field for embedded ESF3-90 -- an-

alog neuromorphic networks.  
 

2. Device structure and electrical characteristics 

This simulation is based on the process flow designed for 

embedded ESF3-90 technology. The logic process is based on 

90nm LP process with 1.2V core and 3.3V I/O. The process 

and electrical characteristics of the device have been re-

searched by Sentaurus TCAD tools. The diagram of the de-

vice structure is shown in Fig. 1. In neuromorphic networks, 

long-term potentiation (LTP) and long-term depression (LTD) 

are the material basis for learning and memory. For the 

LTP/LTD operation of ESF3 cell, the corresponding bias con-

ditions are given in Table I. Five channel voltage-pulse sig-

nals are applied to device synchronously. For the LTP opera-

tion, ESF3 cell is erased by using a series of 100 identical 

voltage-pulse signals (𝑉𝐸𝐺=13.5V) with 0.01-ms peak width 

at half height (PWHH) and 𝐼𝑑 gradually increases with the 

 
Fig.1 The structure of ESF3 memory cell. 

 
Table I Operation Voltage of ESF3 Memory Cell.  

WL Drain (BL) Source EG CG 

Erase 0V 0V 0V 13.5V 0V 

Program 1V 0V 4.5V 4.5V 10V 

Read 3.3V 1V 0V 0V 3.3V 

 

1ns

0.01ms

 
Fig.2 LTP/LTD behaviors of the device using the operation voltage 

scheme in Table I. 

 
increase in the pulses number, while for the LTD operation, 

EFM is programmed by using a series of 100 identical volt-

age-pulse signals (  𝑉𝑊𝐿 =1V, 𝑉𝑆𝑜𝑢𝑟𝑐𝑒 =4.5V, 𝑉𝐸𝐺  =4.5V, and 

𝑉𝐶𝐺=10V) with 1-ns PWHH and 𝐼𝑑 gradually decreases with 

the increase in the number of pulses. The weight update be-

havior is shown in Fig. 2. Transient current is read by apply-

ing 2-ns voltage-pulse signals ( 𝑉𝑊𝐿  = 3.3V, 𝑉𝐵𝐿  =1V, 𝑉𝐶𝐺  = 
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3.3V) behind each LTP/LTD voltage-pulse signal. If needed, 

we can change the PWHH and/or the amount of the LTP/LTD 

voltage-pulse signals to achieve more precise adjustment. 

 

3. Weight mapping and pattern recognition 

For the neuromorphic classifier, when the network is 
trained, the weights are constantly updated as the number 
of training epoch increases. And the differences between 
weights are important because they show that the net-
work can remember the characteristics of the input ob-
jects very well, which is the key metric for more accurate 
pattern classification.  
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Fig.3 Multilayer perceptron classifier: (a) Input training set. (b) Find the op-

timal mapping coefficient λ to minimize squared matching error by scaling 

the 59 available current state values from the LTP data.  (c) Weight distri-

butions of the well-trained values and mapped values in the two-level weight 

matrix of the perceptron.  

 

We construct a two-layer fully connected perceptron (one 

hidden layer), which has 16 inputs representing 4×4 black-

and-white pixels of the input images, three hidden layer neu-

rons, and two output neurons. The input layer and the hidden 

layer each contain a bias. The activation function uses recti-

fied linear unit (ReLU), and the perceptron training uses tra-

ditional backpropagation algorithm. There are (4×4+1) ×3+ 

(3+1) ×2 = 59 synaptic weights between different layers of 

neurons. We simply use two ESF3 cells to represent a signed 

floating-point number (one of which is used to represent sym-

bols), so the network needs 118 ESF3 cells in total. Fig. 3(a) 

is the input training set for two-class patterns, stylistically 

representing the letters "F" and "J" (the test set is the same). 

After 100 epochs, the accuracy of network classification 

reaches 100%. We extract the trained weights and take abso-

lute values to map the first 59 current values of LTP data in 

Fig. 2. Here, we define a mapping coefficient λ, by finding an 

optimal λ that minimizes the square sum of the difference of 

the trained weights and the scaled current values [8]. Then, 

we add the corresponding symbols to the current values after 

mapped and put them back into the original network to get a 

new network. Since the network is designed according to the 

number of current states in LTP/LTD simulation, and the 

number of synaptic weights is less than the total number of 

LTP/LTD current states in Fig. 2. Thus, for convenience, in-

stead of assigning the original well-trained floating-point 

numbers to the nearest memory current values in the mapping 

process [8], we do one-to-one mapping first, although this 

simple approach reduces the recognition accuracy. If the 

recognition accuracy of the matched network differs greatly 

from that of the original network, we will perform a more ac-

curate matching by applying more complex matching rules.  

Finally, the same test set is tested through the network, and 

the recognition accuracy is still 100%. It shows that the fault-

tolerant ability between the LTP/LTD current states of the 

ESF3-90 memory cell is sufficient for this classification task. 

Thus, in further exploration, we can extract more current 

states, and combine the corresponding programming algo-

rithm to realize more application research of complex analog 

neuromorphic networks. 

 

4. Conclusions 

The LTP/LTD behaviors simulation of the ESF3-90 

memory cell has shown good synaptic performance. In the 

experiment of weight mapping, the LTP/LTD data is applied 

to a two-layer fully connected perceptron to do a simple 

recognition task, and the recognition accuracy of the new 

mapped network has achieved 100%, which is same to the 

original well-trained network. So, ESF3-90 memory cell can 

be as a kind of multi-valued memory applied to the analog 

neural networks thus saving a lot of memory resources to 

store weights and intermediate values. 
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