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Abstract 

This work demonstrates high frequency AlGaN/GaN 

HEMTs grown on a 200-mm diameter extremely-low-re-

sistivity (ELR) (2.5 mΩ∙cm) silicon substrate. With a gate 

length of 0.1-𝝁𝐦, the short-circuit current gain cutoff fre-

quency fT, maximum oscillation frequency fmax, and max-

imum transconductance gm, max of 27 GHz, 71 GHz and 

247 mS/mm can be achieved, respectively. The obtained 

high frequency performance is among the best reported 

to date for the GaN HEMTs on such low resistivity silicon 

substrates. 

 

1. Introduction 

GaN-based high electron mobility transistors (HEMTs) 

on the silicon substrate have become the most promising can-

didate for power amplifiers in 5G wireless communication 

systems. To take the advantage of large wafer diameters with 

reduced cost, GaN HEMT grown on large size low-resistivity 

(LR) (𝜌 < 10 Ω∙cm) silicon substrates with a diameter up to 

150 mm was reported [1]. Also, the passive components, such 

as inductors, coplanar waveguides and transmission line, 

were realized on LR ( 𝜌 < 40  Ω∙cm) Si substrates [2-4]. 

Compared with the typically used high-resistivity substrate 

for RF applications, the LR substrate exists a better mechan-

ical strength with lower cost. However, growing a high insu-

lating GaN buffer layer and fabricate high frequency devices 

on a large diameter Si wafer still faces significant challenges. 

In addition, the parasitic effects introduced from the LR sub-

strate could be severe for high frequency applications. In this 

work, 100-nm T-gate GaN HEMTs on 200-mm diameter 

ELR Si (111) (2.5 mΩ∙cm), insulated by a 5.5-μm Carbon 

doped buffer layer, are realized and characterized. The real-

ized 100-nm gate length transistors in this work have 

achieved fT and fmax of 27 GHz and 71 GHz, respectively. 

 

2. Device design and fabrication 

The AlGaN/AlN/GaN HEMTs were grown on a 1000 

μm thick 200 mm diameter P-type ELR Si substrate (pro-

vided by Global Wafers Co., Ltd.), as shown in Fig. 1. The 

wafer consists of a 5.5-μm Carbon doped layer for achieving 

highly resistive GaN buffers [5], followed by a 300 nm GaN 

channel and 1 nm  AlN interlayer. Then, about 25 nm 

Al0.23GaN barrier layer was grown. Finally, a 2-nm GaN layer 

is used to prevent aluminum from oxidizing on the AlGaN su- 

 
 

Fig. 1 Cross-sectional view of the AlGaN/AlN/GaN HEMTs grown 

on the extremely-low resistivity silicon substrate. 

 

 

Fig. 2 FIB micrograph of T-gate for the fabricated GaN HEMT. 

 

rface. The electron mobility and the sheet carrier concentra-

tion are over 1800 cm2/V and 9×1012 cm-2, respectively, 

which results in a 392 Ω/☐ sheet resistance. 

The manufacturing process started from mesa and uses 

Cl3/BCl3 mixed gas with an etching depth of approximately 

150 nm using a Reactive Ion Etching (RIE) system. After 

mesa isolation, the source/drain was recessed to a depth of 20 

nm to reduce the ohmic contact resistance, and then 

Ti/Al/Ti/Au (25/125/45/55 nm) was deposited by thermal 

evaporation, followed by rapid thermal annealing at 800 C 

for 30 s in N2 ambient and lift-off process. The bilayer photo-

resist PMMA/copolymer was coated by E-beam lithography 

system to define a T-shaped gate, followed by a Ni/Au 

(30/360 nm) deposition and lift-off process. The sample was 

then immersed in dilute HCl: H2O (1:8) for 50 s, followed by 

soaking in deionized water for 10 s. A 25-nm SiNX layer was 

deposited by PECVD at 300 C, and CHF3/O2 mixed gas RIE 

etching for via. Finally, the Ti/Au (30/400 nm) pad for RF 

measurement was deposited. 
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Fig. 3 (a) Measured DC IDS-VDS characteristics of the 100-nm Al-

GaN/GaN HEMT on ELR Si substrate (𝑊𝐺 = 2 × 12.5 𝜇m) with a 

good pinch-off and high output resistance. (b) Transfer characteris-

tics at V𝐷𝑆=10 V. 
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Fig. 4 Measured frequency response of the fabricated GaN HEMT 

on the ELR Si substrate at VDS = 10V and VGS = -3.5V. The extracted 

fT and fmax are 27 GHz and 71 GHz, respectively. 

 

 

 

Fig. 5 Measured and modeled frequency response of the fabricated 

GaN HEMT at VDS = 10V and VGS = -3.5V. The extracted fT and 

fmax are 27 GHz and 71 GHz, respectively. 

 

3. Results and Discussion 

The DC I-V characteristics of this work were measured by 

an Agilent B1500A semiconductor device analyzer. The T-

shaped gate with a 0.113 μm footprint and 0.4 μm head was 

captured by FIB, as shown in Fig. 2. Fig. 3(a) and 3(b) show 

the DC IDS-VDS and transconductance characteristics. The 

smaller source-drain distance combined with low ohmic con-

tact resistance allow a low ON-resistance of 2.4 Ω·mm, which 

was extracted at VGS = 2.5V. The maximum drain current 

density (ID, max) of 1.144 A/mm at VGS = 2.5 V and peak ex-

trinsic gm, max of 247 mS/mm at VGS = -1 V can be obtained. 

Note that the short channel effect is not obvious and good 

pinch-off (Ion/Ioff ~ 3×105) can be achieved, which can be 

mainly attributed to the improved gate control over the chan-

nel by improving the aspect ratio between the gate length and 

the optimized AlGaN barrier thickness. 

The small-signal high frequency measurements were per-

formed using the Agilent N5245A PNA-X network analyzer. 

Fig. 4 shows the measured results of the device at the bias of 

VGS = -3.5 V and VDS = 10 V. With the open pad de-embed-

ding procedure, the fT and fmax up to 27 GHz and 71 GHz are 

obtained by extrapolating with a slope of -20 dB/decade. Dur-

ing the parameter extraction and modeling process, it was 

found that the heterojunction of low-resistivity silicon sub-

strate plays an important role for the device frequency re-

sponse due to the two-dimensional electron gas (2DEG) at the 

interface. The parasitics exist at the interface between sub-

strate and GaN result in an RC pole, which significantly lim-

ited the fmax [6]. Fig. 5 presents the measured and modeled 

results by the equivalent circuit including the substrate net-

work. A good agreement can be obtained between the meas-

ured and modeled results. 

 

4. Conclusions 

This work successfully demonstrated the high frequency 

0.1 μm AlGaN/GaN HEMTs with T-shaped gate on an ex-

tremely low resistivity Si substrate (2.5 mΩ·cm). The meas-

ured fT, fmax and gm, max are 27 GHz, 71 GHz and 247 mS/mm 

respectively. The achieved high frequency performance are 

among the best compared with previously reported results for 

the GaN HEMTs on low resistivity silicon substrates. 
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