Fabrication and stability characterization of PbI₂/PbCl₂ added CH₃NH₃PbI_{3-x}Cl_x solar cells

Naoki Ueoka and Takeo Oku

The University of Shiga Prefecture 2500 Hassaka, Hikone, Shiga 522-8533, Japan Phone: +81-749-28-8369 E-mail: oh21nueoka@ec.usp.ac.jp

Abstract

The stabilities of TiO₂/CH₃NH₃PbI_{3-x}Cl_x based photovoltaic devices in ambient air were evaluated upon adding PbI₂ and/or PbCl₂. X-ray diffraction (XRD) peak intensities corresponding to the perovskite phase were increased by adding PbI₂. After 7 weeks, the XRD peak intensities decreased and those corresponding to PbI₂ increased. Thermodynamic calculations of the reaction between PbCl₂ and I₂ suggested that the formation of PbI₂ was not related to the added PbCl₂ but rather to excess PbI₂.

1. Introduction

CH₃NH₃PbI_{3-x}Cl_x cells was improved by PbI₂ addition that 10% concentration of 0.8M PbCl₂ to the CH₃NH₃PbI_{3-x}Cl_x precursor solution [1]. The recombination of electrons and holes were suppressed by PbI₂ formation and external quantum efficiencies were increased. As a result, the open-circuit voltage (V_{OC}) and short-circuit current density (J_{SC}) were improved. Another previous report agreed that excess PbI₂ in the perovskite layer improved the device efficiency [2]. However, the stability and decomposition mechanisms of CH₃NH₃PbI₃. _xCl_x compounds are currently unclear.

The purpose of the present study is to investigate the stability and decomposition mechanism of $CH_3NH_3PbI_{3-x}Cl_x$ solar cells upon adding PbI_2 and/or $PbCl_2$. The carrier transport properties influenced by Pb^{2+} were analyzed.

2. Experimental

J-V characteristics of the photovoltaic cells were measured under illumination at 100 mW cm⁻², using an AM 1.5 solar simulator (San-ei Electric, XES-301S). J-V measurements were performed using a source measurement unit (Keysight, B2901A Precision SMU). The scan rate and sampling time were ~0.08 V s⁻¹ and 1 ms, respectively. Four cells were tested for each cell composition and reported values are averages of these four measurements (η_{ave}). The solar cells were illuminated through the sides of the FTO substrates and the illuminated area was 0.090 cm². The microstructures of the cells were investigated using X-ray diffraction (Bruker, D2 PHASER) and scanning electron microscopy (Jeol, JSM-6010PLUS/LA) equipped with EDS. Thermodynamic calculations of the reactions were performed by HSC Chemistry 5 (Outokumpu Research Oy). Fig. 1 shows the schematic illustration of the perovskite photovoltaic device.

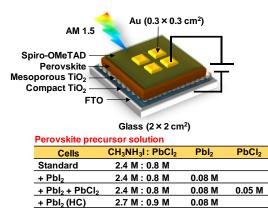


Fig. 1. Schematic illustration of the perovskite photovoltaic device.

3. Results and discussion

The Gibbs free energy (ΔG) of the reactions were calculated and the results are shown in Fig. 2. The ΔG values for the formation of PbI₂ from Pb + I₂ and PbCl₂ + I₂ at room temperature were negative and positive, respectively, which indicated that PbI₂ formed from Pb + I₂. These results indicated that the formation of PbI₂ was not due to excess PbCl₂

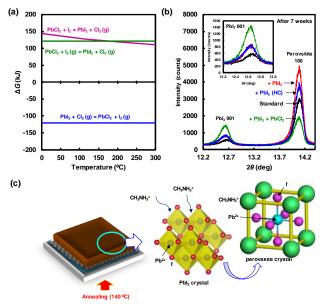


Fig. 2. (a) Thermodynamic calculations of the ΔG for the reaction, (b) XRD patterns after 7 weeks and (c) schematic illustrations of formation mechanism of perovskite crystal.

but to excess PbI₂ or the decomposition of CH₃NH₃PbI_{3-x}Cl_x perovskite grains. The diffraction peaks of the + PbI₂ (HC) cell were similar to those of the + PbI₂ cell. For the same quantity of added PbI₂, the separation of PbI₂ crystals did not depend on the concentration of the perovskite precursor solution, as shown in Fig. 2 (b). PbI₂ crystals were formed at 90 °C [3], and the perovskite crystals were formed by reaction of CH₃NH₃⁺ and PbI₂, as shown in Fig. 2 (c).

Normalized intensities of the 100 diffraction peaks of perovskite and 001 diffraction peaks of PbI₂ are shown in Fig. 3 (a) and (b), respectively. Average reaction rate constants for the decomposition of perovskite crystals (k_1) and the formation of PbI₂ (k_2) were estimated from the diffraction intensities and are summarized in Table 1. The k_1 value for the + PbI₂ cell was the smallest among the present devices, which indicated that the decomposition of perovskite grains was suppressed by the PbI₂ crystals. The k_1 and k_2 values for the + PbI₂ + PbCl₂ cell were the highest and lowest, respectively, which indicated that the perovskite grains decomposed upon adding excess PbI₂. The most ratio of PbI₂ formation of + PbI₂ + PbCl₂ cell for the decomposition of perovskite crystals.

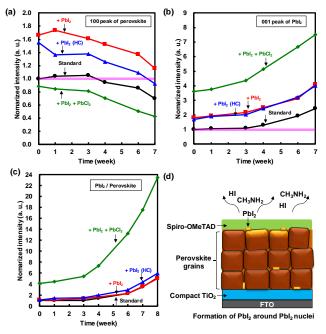


Fig. 3. Normalized XRD intensities of the (a) 100 peak of perovskite, (b) 001 peak of PbI₂, (c) PbI₂/perovskite and (d) schematic illustration of decomposition mechanism for the perovskite photovoltaic devices, respectively.

Table 1. Reaction rate constants for the decomposition of perovskite crystals (k_1) and formation of PbI₂ (k_2) .

Cell	$k_1 \times 10^{-7} (s^{-1})$	$k_2 \times 10^{-7} (s^{-1})$
Standard	1.36	2.24
$+ PbI_2$	1.19	2.13
$+ PbI_2 + PbCl_2$	1.78	1.73
+ PbI ₂ (HC)	1.54	2.28

The formation of PbI_2 was considered to be due to the desorption of CH_3NH_2 and *HI* from the surface of the $CH_3NH_3PbI_{3-x}Cl_x$ perovskite phase, as shown in Fig. 3 (d).

The atomic ratios of Cl/Pb remained almost constant. Once PbI₂ crystals formed around PbI₂ nuclei on the surface of the perovskite, decomposition of the perovskite crystals was suppressed by the added PbI₂ for the + PbI₂ cell. As a result, the conversion efficiency was maintained for 7 weeks for device with added PbI₂, as shown in Fig. 4 (a) and (b). The distribution density of the perovskite grains increased and the smoothness of the perovskite/spiro-OMeTAD interface was increased, which resulted in the increase in V_{OC} and *FF*. Charge transport time would be shorter for the + PbI₂ cell because PbI₂ crystals transport carriers efficiently in the perovskite layer compared with the standard cell [4-5]. Since PbI₂ is a *p*-type semiconductor with the bandgap energies of 2.3~2.6 eV, the PbI₂ could also work as a hole transport layer in the perovskite phase, as shown in Fig. 4 (c) and (d).

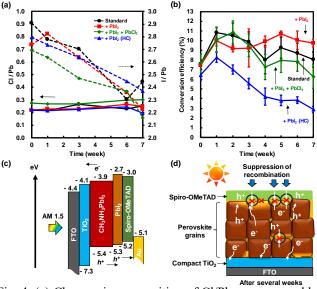


Fig. 4. (a) Changes in composition of Cl/Pb, as measured by EDS, (b) changes in conversion efficiency, (c) energy level diagram and (d) schematic illustration of carrier transport mechanism for the perovskite photovoltaic devices, respectively.

References

- N. Ueoka, T. Oku, Y. Ohishi, H. Tanaka, and A. Suzuki, Chem. Lett. 47 (2018) 528.
- V. Kapoor, A. Bashir, L. J. Haur, A. Bruno, S. Shukla, A. Priyadarshi, N. Mathews, and S. Mhaisalkar, Energy Technol. 5 (2017) 1880.
- A. Wakamiya, M. Endo, T. Sasamori, N. Tokitoh, Y. Ogomi, S. Hayase, and Y. Murata, Chem. Lett. 43 (2014) 711.
- P. S. Chandrasekhar, A. Dubey, K. M. Reze, M. D. N. Hasan, B. Bahrami, V. K. Komarala, J. D. Hoefelmeyer, Q. He, F. Wu, H. Qiao, W. H. Zhang, and Q. Qiao, Sustainable Energy Fuels 2 (2018) 2260.
- N. Ueoka and T. Oku, ACS Appl. Mater. Interfaces 10 (2018) 44443.