Performance and Light Stability of Electron-Selective TiO₂ with an AlO_x Interlayer Hyunju Lee and Yoshio Ohshita

Toyota Technological Institute 2-12-1 Hisakata, Tempaku-ku Nagoya 468-8511, Japan Phone: +81-52-809-1877 E-mail: leehyunju@toyota-ti.ac.jp

Abstract

We have investigated effects of different tunnel oxide layers on the performance and light stability of tunnel oxide/TiO₂ stack electron-selective contacts on *n*-type Si. From the study, we found that although chemical SiO₂ and thermal atomic layer deposited AlO_x tunnel layers show higher passivation performance, plasma-enhanced atomic layer deposited AlO_x tunnel layers demonstrate light-enhanced τ_{eff} with an ITO capping layer as well as the highest light stability without an ITO capping layer. Meanwhile, the results of X-ray photoelectron spectroscopy analysis demonstrate that ultrathin AlO_x tunnel layers result in no change in the band alignment between TiO₂/*n*-Si, compared to SiO₂ interlayers.

1. Introduction

Recently, carrier-selective contacts (CSCs) for crystalline silicon (c-Si) photovoltaics (PV) have attract a tremendous amount of interest in academic and industrial photovoltaic research areas. In this concept, a set of dopant-free carrier-selective contacts (CSCs) is employed to separate and collect photogenerated free carriers in a cell structure [1]. Up to now carrier-selective contact materials such as metal oxides, fluorides, and organic polymers have been studied and significant progress has been made [2]-[9]. Among the electron-selective transport materials described above, TiO_2 is one of the few industrially matured materials and various fabrication techniques have been developed to deposit TiO_2 thin layers.

Meanwhile, it was reported that the band alignment of a TiO_2 thin layers with a Si substrate is clearly affected by the presence of an interlayer between a TiO_2 thin layer and a Si substrate [10]. In addition, it has been widely known that similar to ALD AIO_x passivation layers, the passivation performance of ALD TiO_2 layers can be largely enhanced under light illumination due to a light-enhanced negative fixed charge density in TiO_2 passivation layers [11]. However, the light stability of ultrathin electron-selective TiO_2 contacts has not been evaluated.

Therefore, in this study, we have investigated effects of different tunnel oxide layers on the performance and light stability of the fabricated tunnel oxide/ TiO_2 stack electron-selective contacts for developing high-performance light-stable electron-selective contacts.

2. Experimental Details

Double-side shiny-polished *n*-type Fz Si wafers ((100)orientation, resistivity of 1-5 Ω ·cm, thickness of 285 μ m) were used to fabricate tunnel oxide/TiO₂ stack-based electron-selective contact passivated samples. After wafer cleaning with the standard RCA procedure, ultrathin chemical SiO₂ tunnel layers with about 1.2 nm thickness and ultrathin plasma-enhanced ALD (PEALD) and thermal ALD (TALD) AlO_x tunnel layers with sub-1 nm thickness were fabricated on the cleaned and HF-lasted Si wafers. Finally, ~3.5-nmthick TALD TiO₂ electron-selective transport layers were deposited on the tunnel oxide passivated Si wafers. After the deposition, all fabricated samples experienced forming gas annealing (FGA).

Effective minority carrier lifetime (τ_{eff}) of the symmetrically passivated samples was obtained by QSSPC measurements with a Sinton WCT-120 photoconductance lifetime tester at high injection levels. The thickness and chemical composition of the prepared layers and their interface with a Si wafer were determined from ellipsometry measurement and X-ray photoelectron spectroscopy (XPS) measurement of single-side passivated samples, respectively.

For investigating light stability of the symmetrically passivated samples with/without ~100-nm-thick indium tin oxide (ITO) capping layers fabricated by remote plasma deposition (RPD) technique, we measured time-dependent changes of $\tau_{\rm eff}$ of the prepared samples under AM1.5G illumination at 1-sun intensity and 25±1 °C (STC) after a certain time interval.

3. Results and Discussion

Fig. 1 shows the Si 2p peaks of SiO₂ interlayers in the fabricated samples. The fitted Si 2p peaks show that the formation of Si-O-Ti and Si-O-Al bonds as well as the formation of a thinner and lower quality SiO_x interlayer in the sample with a TALD AlO_x tunnel layer compared to the sample with chemical SiO₂ and PEALD AlO_x tunnel layers. Formation of a thinner and lower quality SiO_x interlayer under an ultrathin TALD AlO_x layer seems to be due to a small number of deposition cycles and weak oxidizing power of H₂O for a TALD process. From the results, we could conclude that chemical composition and thickness of SiO_x interlayers seem to be significantly affected by stack materials and/or fabrication processes of tunnel oxide layers.

We investigated performance and light stability of the fabricated samples under AM1.5G illumination at 1-sun intensity and 25 ± 1 °C, respectively. After FGA processes the samples with PEALD AlO_x tunnel layers demonstrate inferior passivation quality to other samples, and the samples with chemical SiO₂ tunnel layers show the highest level of passivation quality among the samples, and J_0 of ~12 fA/cm²,

implied open-circuit voltage iV oc of ~689 mV, and implied fill factor iFF of ~81 % could be obtained from the samples with chemical SiO₂ tunnel layers (data not shown here).

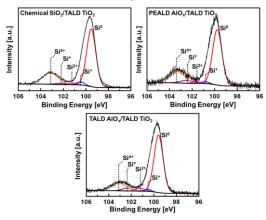


Fig. 1 Fitted XPS spectra of Si 2p peaks measured from the samples with chemical SiO₂ (top-left), PEALD AlO_x (top-right), and TALD AlO_x (bottom) tunnel layers, respectively. Si $2p_{1/2}$ peaks of Si⁰ peaks have not shown for simplicity. Si* peaks show the presence of Si-O-Ti bonds (top-left) and Si-O-Al bonds (top-right and bottom).

However, as shown in Fig. 2, the samples with PEALD AlO_x tunnel layers show the highest light stability (e.g., degradation of $\tau_{\rm eff} < 20$ %) compared to other samples (e.g., degradation of $\tau_{\rm eff}$ > 40 %) after 8000 min of illumination. Meanwhile, the samples with a chemical SiO₂ tunnel layer and a TALD AlO_x tunnel layer show similar degradation behavior. Such inferior light stability seems to be due to low UV-stability of an ultrathin SiO₂ tunnel layer under a thin TiO₂ layer and an ultrathin lower-quality SiOx interlayer under a TALD AlO_x layer with low film density, compared to a PEALD AlO_x layer with high film density. Meanwhile, ~100-nm-thick ITO capping layers seem to enhance light stability of all ultrathin tunnel oxide/TiO2 stack-passivated samples though surface damage of the ultrathin tunnel oxide/TiO2 stack-passivated samples during an ITO deposition process cannot be fully recovered by FGA. In addition, although light-enhanced τ_{eff} of ultrathin tunnel oxide/TiO2 stack-passivated samples cannot be observed for all samples without an ITO capping layer, light-enhanced τ_{eff} can be observed from PEALD AlO_x tunnel oxide/TiO2 stack-passivated samples only. However, the enhanced $\tau_{\rm eff}$ also decreases eventually.

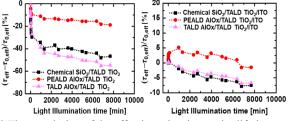


Fig. 2 Time evolution of the effective minority carrier lifetime τ_{eff} of the fabricated samples under AM1.5G illumination at 1-sun intensity and 25±1 °C without (left) and with (right) ~100-nm-thick ITO capping layers.

Finally, we deduced the band alignment of the samples using by XPS and UV-Vis-NIR spectroscopy according to Kraut's method (data not shown here) [10]. Chem. SiO₂ and ALD AlO_x tunnel oxide layers show no difference of band alignment and this could be due to the very low fixed charge density in ultrathin ALD AlOx tunnel oxide layers and/or the surface Fermi level strongly pinned by (plasma) damage on c-Si surfaces during ALD AlO_x deposition processes. Higher light stability of PEALD AlOx tunnel oxide layers seems to be due to the high mass density and/or low hydrogen content of PEALD AlOx tunnel layers, which effectively protect Si/SiO_x interfaces from light illumination. From the results, we could conclude that ultrathin sub-1nm-thick PEALD AlO_x tunnel oxide layers could enhance light stability of TiO₂ electron-selective contacts without a change of band alignment, compared to Chem. SiO₂ tunnel layers.

3. Conclusions

The passivation performance and light stability of electron-selective TiO_2 contacts on *n*-type c-Si substrates with different ultrathin tunnel oxide interlayers have been investigated. Ultrathin tunnel oxide/TiO₂ stack electron-selective contacts show significant light instability. However, ~100-nm-thick ITO capping layers could largely reduce light instability of the TiO₂ electron-selective contacts. In addition, ultrathin sub-1-nm-thick PEALD AlO_x tunnel layers could provide enhanced light stability of TiO₂ electron-selective contacts without a significant change of band alignment compared to Chem. SiO₂ and TALD AlO_x tunnel layers.

Acknowledgements

This work has been supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan and the Research Center for Smart Energy Technologies at Toyota Technological Institute.

References

- [1] J. Melskens, B. W. H. van de Loo, B. Macco, L. E. Black, S. Smit, and W. M. M. Kessels, IEEE J. Photovolt. 18 (2018) 373.
- [2] S. Avasthi , W. McClain , G. Man , A. Kahn , J. Schwartz , and J. Sturm, Appl. Phys. Lett. **102** (2013) 203901.
- [3] J. Bullock et al., Proceedings of 43rd IEEE Photovoltaic Specialists Conference (2016) 210.
- [4] J. Bullock, M. Hettick, J. Geissbühler, A. J. Ong, T. Allen, C. M. Sutter-Fella, T. Chen, H. Ota, E. W. Schaler, S. De Wolf, C. Ballif, A. Cuevas, and A. Javey, Nat. Energy 1 (2016) 15031.
- [5] Y. Wan, C. Samundsett, J. Bullock, T. Allen, M. Hettick, D. Yan, P. Zheng, X. Zhang, J. Cui, J. McKeon, A. Javey, and A. Cuevas, ACS Appl. Mater. Interfaces 8 (2016) 14671.
- [6] G. Masmitjà, P. Ortega, J. Puigdollers, L. G. Gerling, I. Martín, C. Voz, and R. Alcubilla, J. Mater. Chem. A, 3 (2018) 3977.
- [7] W. Wu, W. Lin, J. Bao, Z. Liu, B. Liu, K. Qiu, Y. Chen, and H. Shen, RSC Adv. 7 (2017) 23851.
- [8] W. Lin, W. Wu, J. Bao, Z. Liu, K. Qiu, L. Cai, Z. Yao, Y. Deng, Z. Liang, and H. Shen, Mater. Res. Bull. 103 (2018) 77.
- [9] H. Imran, T. M. Abdolkader, and N. Z. Butt, IEEE Trans. Electron Devices 63 (2016) 3584.
- [10] M. Perego, G. Seguini, G. Scarel, M. Fanciulli, and F. Wallrapp, J. Appl. Phys. 103 (2008) 043509.
- [11] A. F. Thomson and K. R. McIntosh, Prog. Photovolt: Res. Appl. 20 (2012) 343.