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Abstract 

Single crystals of hexyl-substituted thiophene/phe-

nylene co-oligomer (TPCO) are fabricated by a solution-

grown method. Optical transitions are determined by ul-

traviolet-visible (UV-Vis) and photoluminescence (PL) 

spectroscopies. Owing to self-waveguiding and one-di-

mensional light confinement in the hexyl-substituted 

TPCO platelet crystal, emission gain narrowing is ob-

served above an excitation density of 262 J/cm2 under 

Nd:YAG nanosecond pulsed laser excitation at room tem-

perature. 
 

1. Introduction 

Organic lasers owing to their ultracompact physical sizes, 

high optical gain coefficients and efficient waveguiding are 

promising building blocks for integrated photonic and optoe-

lectronic devices [1-5]. Organic crystals with the unique mo-

lecular packing mode and the minimized defects are advanta-

geous for bottom-up approach to fabricate optical gain media. 

So far, lasing from organic materials has extensively been re-

ported for anthracene [4], conjugated polymers [3], thio-

phene/phenylene co-oligomers (TPCOs) [5-10], etc. Particu-

larly, owing to self-waveguiding and light confinement ef-

fects, self-assembled TPCO crystals with a pair of well-de-

fined parallel facets act as gain media with Fabry-Pérot (F-P) 

feedback mirrors [8, 9]. For the TPCO crystals, lasing and 

amplified spontaneous emission (ASE) have stably been ob-

served even in air at room temperature [5, 8, 9]. The stable 

lasing performance in ambient atmosphere, along with high 

fluorescence quantum yield and crystal structure controlled 

by an introduction of a substituent at the molecular terminal, 

is of pivotal importance in realizing the organic lasers. In ver-

tical cavity surface emitting laser (VCSEL), a molecular ori-

entation should be necessarily controlled to optimize the re-

fractive index anisotropy and polarization properties. In cy-

ano-substituted TPCO, 2,5-bis(4′-cyanobiphenyl-4-yl)thio-

phene (BP1T-CN), surface emitting lasing has been demon-

strated owing to the lying molecular orientation against the 

basal face of the crystal [5, 10]. The introduction of different 

substituents leads to different molecular alignment due to a 

change in the intermolecular interaction [5, 9, 10]. For exam-

ple, since the introduction of alkyl chain at the molecular ter-

minal hinders a dense molecular packing resulting in the im-

provement of solubility [11], it is expected that the molecular 

arrangement in single crystals is different from that in the 

conventional TPCO crystals [5, 9, 10]. In the present study, 

to investigate the effect of the substituent on the molecular 

orientation and amplified light emission properties, we pre-

pared a single crystal of hexyl-substituted TPCO, 5,5'-Bis(4'-

n-hexyl-4-biphenylyl)-2,2'-bithiophene (BP2T-Hx). 
 

2. Experiment 

The synthesis and purification of BP2T-Hx were carried 

out according to the literature procedures [6-8]. Crystalliza-

tion of BP2T-Hx was carried out by the following method. 

After 8 mg of BP2T-Hx powder was dissolved in 8 mL of 

1,2,4-trichlorobenzene (Nakarai Tesque) by heating at 150 °C, 

the crystals were precipitated by slowly cooling to 40 °C in 

16 h. By filtrating the resulting solution, thin platelet crystals 

were obtained. 

Fluorescence image of the BP2T-Hx crystal was taken 

under ultraviolet excitation (λex =365 nm) using a fluores-

cence microscope (Olympus BX-51) with a 20× objective 

lens and an Olympus DP21 digital camera. An ultraviolet-vis-

ible (UV-Vis) spectrophotometer (JASCO V-530, Japan) was 

used to measure the absorption spectra. For the PL measure-

ment, an excitation light of λex=355 nm from Nd:YAG laser 

(repetition rate of 1 kHz, pulse width of <1.1 ns) was incident 

to the BP2T-Hx crystal. The PL spectra were detected from 

the crystal edges using a CCD spectrometer (Hamamatsu 

PMA-50). 
 

3. Results and Discussion 

Molecular structure of BP2T-Hx and fluorescence micro-

graph of the crystal are shown in Fig. 1. In Fig. 1(b), edge 

emission from a disk-shaped crystal is seen, and this indicates 

that the crystal itself functions as a thin-film waveguide. Op-

tical absorption and photoluminescence (PL) spectra are 

shown in Fig. 2. The peaks at 470 nm, 440 nm, and 410 nm 

can be assigned to 0-1, 0-2, and 0-3 absorption bands, respec-

tively. The PL bands at 530 nm, 560 nm, and 590 nm are as-

signed to 0-1, 0-2, and 0-3 transitions, respectively. From 

these spectra, it is expected that the lowest 0-0 transition is 

forbidden due to antiparallel exciton coupling in the excited 

state in analogy with other TPCO crystals [9, 10]. X-ray 
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diffraction analysis is undergoing to determine the crystal 

structure and molecular orientation. 

Figure 3(a) shows the excitation density dependence of 

PL spectra of the BP2T-Hx crystal. At low excitation density 

of 35 J/cm2, broad emission peaks are observed at the 0-1 

and 0-2 bands. With increasing excitation density to 262 

J/cm2, the 0-1 emission is amplified by stimulated emission. 

At an excitation density of 475 J/cm2, the 0-1 emission band 

with a full width of half maximum (FWHM) of ~5.8 nm was 

observed. Figure 3(b) shows the excitation density depend-

ence of the integrated PL intensity of the 0-1 band in the 

BP2T-Hx crystal. The 0-1 emission intensity increases line-

arly with an increase in the excitation density (∝I1) under the 

low excitation density region, while the integrated intensity 

increases superlinearly (∝I1.9) when the excitation density is 

beyond a threshold of 262 J/cm2. These results show clearly 

that the light emission from the BP2T-Hx crystal is gain-nar-

rowed by self-waveguiding in the planar cavity. 
 

4. Conclusions 

We have fabricated the single crystals of BP2T-Hx which 

is a new derivative of TPCOs by using a solution-grown 

method. The BP2T-Hx platelet crystal with self-waveguiding 

and one-dimensional light confinement resulted in amplified 

light emission at excitation threshold of 262 J/cm2 under 

Nd:YAG nanosecond pulsed laser excitation at room temper-

ature. 
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(a) 

(b) 

Fig. 1. Molecular structure of BP2T-Hx (a) and fluorescence 

micrograph of BP2T-Hx crystal (b). 

Fig. 2. Optical absorption and photoluminescence (PL) 

spectra of BP2T-Hx crystal. 

(a) 

Fig. 3. (a) Excitation density dependence of PL spectra of the 

BP2T-Hx crystal. (b) Excitation density dependence of the inte-

grated PL intensity of the 0-1 band. 

(b) 
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