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Abstract 

This paper presents an energy-efficient hardware acceler-

ator for binarized convolutional neural networks (BCNNs). A 

magnetic-tunnel-junction (MTJ)-based nonvolatile field-pro-

grammable gate array, where the number of stored-data up-

dating is minimized in configurable logic block, acts as an 

important component to save energy consumption in BCNN 

with maintaining high-speed shifting. It is demonstrated un-

der 55nm CMOS/MTJ process technologies that the power 

consumption of the proposed hardware is 8.7x lower than that 

of a BCNN hardware without energy-efficient data shifting. 

 

1. Introduction 

The internet of things (IoT) has become the post-cloud era 

and edge computing, where data is collected and processed 

locally at each edge device, is an emerging technology. In 

such edge computing, a hardware accelerator for artificial in-

telligence (AI) plays a significant role [1]. A field-program-

mable gate array (FPGA) is a promising hardware platform 

owing to its reconfigurable and fully parallel architecture [2] 

and the use of a binarized convolutional neural network 

(BCNN) where network parameters are expressed in binary 

format is an effective approach to implementing an AI accel-

erator on the FPGA [3, 4]. However, since in a conventional 

SRAM-based FPGA, storage elements are volatile, the power 

supply must be continuously applied during the operation to 

keep the stored information, which causes a large amount of 

standby power consumption. As a result, to minimize the 

number of idle components is required for the SRAM-based 

BCNN accelerator design. 

In order to essentially solve the above standby-power 

problem, it is important to design a nonvolatile FPGA (NV-

FPGA) [5] based low-power BCNN accelerator with energy-

efficient data-transfer scheme. Since all the data are stored 

into nonvolatile devices, a power-gating technique can be 

fully utilized and standby power consumption of idle pro-

cessing elements (PEs) are eliminated. This standby power 

reduction mechanism is quite suitable for massively parallel 

architecture where a large number of PEs must be prepared. 

Moreover, the use of only-once-write shifting in lookup table 

(LUT) circuit [6, 7] makes it possible to perform energy effi-

cient data transferring in the BCNN accelerator. As a typical 

design example, a PE is designed in 55nm CMOS/MTJ pro-

cess technologies.  

2. NV-FPGA-Based BCNN Accelerator 

A typical BCNN model contains convolutional, pooling, 

and fully-connected layers as shown Fig. 1 (a). The first few 

layers usually capture regional information such as edges and 

curves, and the last few layers interpret these low-level fea-

tures into high-level abstractions with the posterior probabil-

ity assigned for classification. Figure 1 (b) shows the pseudo 

code of a convolutional layer whose operation is composed 

by multiplications and additions. In the BCNN, since all the 

data are expressed by 0 or 1, the convolutional operation is 

replaced by XNOR and bit-count operations [3]. Figure 2 

shows the overall architecture of the NV-FPGA-based BCNN 

accelerator with N PEs. The convolutional operation is per-

formed by several PEs and the number of PEs used in the 

convolutional function depends on which layer is calculated; 

thus, some PEs are idle during at each convolutional opera-

tion. The use of NV-FPGA makes it possible to reduce the 

standby power of such idle PEs. 

  Figure 3 shows a block diagram of the proposed PE which 

is composed of multiply-accumulate (MAC) units, input buff-

ers (IBUFs), and weight buffers (WBUFs). Input feature 

maps and weights are serially sent to MAC units via IBUFs 

and WBUFs. Since these data are binary format, the MAC 

unit is simply implemented by an XNOR gate and an accu-

mulator. Since the input feature map and the weight are long 

data stream, data-shift function performs an important role in 

the BCNN operation. Thus, it is very important to consider 

how to implement shift register in the BCNN accelerator.  

  Figure 4 (a) shows a typical shift register function in 2-in-

put LUT circuit where each storage element (SE) is connected 

to its neighbors and the shift operation is directly performed 

by propagating data to the next SE. In this case, all the four 

SE are always active during the operation, which results in 

high write power consumption. Figure 4 (b) shows the only-

once-write shifting in the 2-input LUT circuit where 

read/write address is updated at each cycle [6, 7]. The shift 

operation is performed by serially reading and updating the 

content of corresponding SE at each cycle which makes it 

possible to minimize the number of write access per cycle to 

one. This shifting method can be compactly implemented in 

the LUT circuit [6, 7] and WBUF and IBUF are implement 

by using the proposed LUT circuits as shown in Fig. 5 and 

Fig. 6 respectively.  

3. Evaluations 

   Table 1 shows the comparison of the power consumption 

during computing the 1st layer of the BCNN for MNIST im-

age recognition task. Since 6-input LUT circuits are used, 

each LUT circuits update 64 SEs at each 1-bit shift operation. 

In contrast, by using only-once-write shifting, the number of 

write-access for BCNN operation is reduced to 1/64 com-

pared to that of conventional method which results in 8.7x 

lower power consumption.  
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4. Conclusions 

An energy-efficient hardware accelerator for BCNN has 

been presented using only-once-write shifting and its poten-

tial for low power operation is demonstrated. For the next step, 

it is very important to explore detailed design space and to 

evaluate quantitively in overall BCNN accelerator.  
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Fig. 1. Overview of BCNN: (a) network structure, (b) convolu-

tional layer and its pseudo code. 

 
Fig. 2. Overall architecture of the NV-FPGA-based BCNN acceler-

ator. Since all the data are nonvolatile, power supply of the idle 

PEs is turned off and standby consumption is reduced. 

 
Fig. 3. Block diagram of the proposed PE. 

 
Fig. 4. Shift operation in 2-input LUT circuit:  

(a) conventional, and (b) proposed. 

 

 
Fig. 5. Block diagram of weight buffer (WBUF). 

 

 
Fig. 6. Block diagram of input buffer (IBUF). 

 

 

Table. 1. Comparison of power consumption. 
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(1)The 1st layer of the BCNN for MNIST image recognition task

-> R=C=24，M=10，N=1，K=3 (see Fig. 1(b))

-> PR = PC = 8, PM = 5  (see Fig. 3)

(2) 64 SEs are updated at each 1-bit shift operation.

(3) 55nm CMOS/MTJ technologies with 250MHz frequency
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