Low Contact Resistance between Sputtered-MoS₂ and Self-Aligned-TiSi₂ Films Treated by Higher-Temperature Forming-Gas Annealing

Satoshi Igarashi, Yusuke Mochiduki, Haruki Tanigawa, Masaya Hamada, Kentaro Matsuura,

Iriya Muneta, Kuniyuki Kakushima, Kazuo Tsutsui and Hitoshi Wakabayashi

Tokyo Institute of Technology

4259, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-0026, Japan Phone: +81-45-924-5847 E-mail: igarashi.s.ad@m.titech.ac.jp

Abstract

Self-aligned-TiSi₂ contacts to sputtered-MoS₂ films are investigated, because TiSi₂ films have low work function and chemical stability. Owing to a higher-temperature forming-gas anneal, a low contact resistivity of 1.72 x $10^{-4} \Omega$ -cm² with the TiSi₂ contacts to the MoS₂ films was obtained with higher process-integration ability to logic LSI applications.

Introduction

Molybdenum disulfide (MoS₂) is an attractive material for future MOSFET channel, because of the remarkable mechanical and electrical characteristics such as atomically thin layer structure and high mobility of 700 cm²/Vs [1,2]. In various methods of MoS_2 film syntheses [1-3], we focused on the sputtering method, because it has been reported that a large, uniform and low-carrier-density MoS₂ film was obtained [4]. For MoS₂ device applications, contact resistances are required to be reduced. It has been reported the low-contact resistance was obtained by low work-function metals such as scandium, molybdenum (Mo) and titanium (Ti) owing to low Schottky barrier heights against n-type MoS₂ film [2,5,6]. However, there has been a problem for pre-cleaning before MoS₂ deposition in bottom contact structure. It is certain that the chemical stability in the RCA cleaning is preserved by using a MoSi₂ contact underneath the MoS₂ film. However, a contact resistance of MoS₂/MoSi₂ stacks was still high as 2.6 x $10^{-2} \Omega$ -cm² [7]. In contrast, a titanium disilicide (TiSi₂) film has the low work function as small as a Ti film [8]. Therefore, it is speculated that MoS2/TiSi2 contacts realize the low contact resistance, because of low Schottky barrier heights in the MoS₂ film.

In this study, we investigated on self-aligned-TiSi₂ contact characteristics to the sputtered-MoS₂ film for logic LSIs.

Experimental Methods

In Figs. 1, 2 and 3, a process flow, schematic image and top view of a sputtered MoS₂ channel device are shown, respectively. In this study, the Transmission Line Model (TLM) devices were fabricated in order to extract the contact resistance. An n-doped poly-Si/SiO₂/Si substrate was used and etched by the Chemical Dry Etching (CDE). After Sulfuric hydrogen Peroxide Mixture (SPM) cleaning and Diluted Hydrogen Fluoride (DHF) treatment, Ti and titanium nitride (TiN) films were deposited. Then, a self-aligned-TiSi₂ film was synthesized by sintering in Ar gas and Ammonia hydrogen Peroxide Mixture (APM) removal was applied as a selective etching of residual TiN/Ti films and the TiSi₂ surface cleaning, simultaneously. A 3-nm MoS_2 film was sputtered, and an Al_2O_3 film was directly deposited as a passivation film by the Atomic Layer Deposition (ALD) method [9]. A device isolation for the MoS_2 active area was conducted by the photolithography and the Reactive Ion Etching (RIE). After a resist removal by O_2 plasma, a forming gas (FG) annealing at various temperatures in N_2 gas with 3% H_2 was applied.

Results and Discussion

In Fig. 4, I-V characteristics are shown, and the Ohmic contacts are obtained between 500-650°C. In Fig. 5, current values at V = 1 V on various FG annealing temperatures up to 800°C. The maximum currents are obtained at 650°C. On the other hand, in Fig. 6, the sheet resistances of the MoS₂ films decrease with an increase in temperature up to 800°C. It is speculated that mobility was remarkably enhanced with slight reduction of carrier density by the high temperature annealing [10].

In Fig. 7, contact resistivities at the interface between MoS₂ and TiSi₂ films depending on FG anneal temperatures calculated by TLM measurements are shown with reported data [5-7,11]. In the region up to 650°C, contact resistivities decrease with an increase in the temperature. It is speculated that alloying was enhanced by FG annealing at the interface between MoS₂ and TiSi₂ films. On the other hand, the contact resistance increases with an increase temperature above 650°C. It is speculated that C54-TiSi₂ film agglomerations were occurred [12]. As a result, the lowest contact resistivity of 1.72 x $10^{-4} \Omega$ -cm² in this study was obtained by the FG anneal at 650°C. Low contact resistivity at the interface between the MoS₂ and TiSi₂ films is achieved with smaller value than that of the MoSi₂ film. Eventually, the MoS₂/TiSi₂ contact simultaneously realizes low contact resistivity and high chemical stability for MOSFET integration.

Conclusions

Low contact resistivity of 1.72 x $10^{-4} \Omega$ -cm² was obtained at the interface between sputtered-MoS₂ and selfaligned-TiSi₂ films. Furthermore, the chemical stability was also realized at the same time. The TiSi₂ contact to the MoS₂ film is expected to be applied for logic LSIs.

Acknowledgements

This work was partly supported by JST CREST and COI with Grant Number of JPMJCR16F4 and JPMJCE1309, respectively.

References

- [1]B. Radisavljevic, et al., Nat. Nanotechnol. 6.3 (2011) 147.
- [2]S. Das, et al., Nano Lett. 13.1 (2013) 100-105.
- [3]Y. H. Lee, et al., Adv. Mater. 24.17 (2012) 2320-2325.

- [4]T. Ohashi, et al., Jpn. J. Appl. Phys. 54.4S (2015) 04DN08.
- [5]J. Kang, et al., Appl. Phys. Lett. 104.9 (2014) 093106.
- [6]M. Toyama, et al., Jpn. J. Appl. Phys. 57.7S2 (2018) 07MA04.
- [7]K. Matsuura, Tokyo Tech, Doctoral Thesis (2020).
- [8]E. Bucher, et al., Appl. Phys. A 40.2 (1986) 71-77.
- [9]H. Tanigawa, et al., Jpn. J. Appl. Phys. 59.SM (2020) SMMC01.
- [10]M. Y. Yin, et al., J. Semicond. Technol. Sci. 18.2 (2018) 153-159.
- [11]E. Gourmelon, et al., J. Appl. Phys. 87.3 (2000) 1182.
- [12]G. E. Georgiou, et al., J. Electrochem. Soc. 141.5 (1994) 1351.
 - n-doped poly-Si (120 nm)/SiO₂ (100 nm)/Si
 SPM cleaning and DHF treatment
 Photolithography
 Poly-Si etching by CDE
 Resist removal by acetone and ethanol
 SPM cleaning and DHF treatment
 Ti sputtering
 TiN sputtering for cap
 TiSi₂ formation (680°C, 20 sec, Ar gas)
 APM cleaning for residual TiN/Ti removal
 MoS₂ sputtering (3 nm, 400°C)
 Al₂O₃ passivation by ALD (15 nm, 300°C)
 MoS₂-active-definition photolithography
 Al₂O₃ and MoS₂ etching by RIE
 Resist removal by O₂ plasma
 - FG (3% H₂ in N₂) annealing up to 800°C for 1 min

Fig. 1 Process flow for TLM devices.

Fig. 3 Top view of the TLM device using sputtered-MoS $_2$ thin channel with length between contacts of 11-38 μ m, width of 247 μ m.

n-doped poly-Si (120 nm)

Fig. 2 Cross-sectional schematic image of the MoS₂ channel TLM device structure with the TiSi₂ contact.

Fig. 7 Contact resistivity at MoS₂/TiSi₂ interface depending on FG anneal temperature and reported data with various contact metals [5-7,11].