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Abstract 
Charge carriers in graphene, massless Dirac fer-

mions, form a unique sequence of the Landau levels in 
high magnetic fields. Thus, the cyclotron resonance (CR) 
in graphene is distinctly different form that in conven-
tional two-dimensional electron systems based on semi-
conductors. In this work, we study mid-infrared/THz 
photoresponse due to CR in graphene/h-BN van der 
Waals heterostructures. In particular, we focus on CR in 
a dual-gated trilayer graphene/h-BN [1] and a 
monolayer graphene under double-moiré potentials [2].  
 
 
1. CR in dual-gated trilayer graphene 

ABA-stacked trilayer graphene (TLG) possesses both 
monolayer graphene (MLG)-like and bilayer graphene 
(BLG)-like bands. In a high perpendicular magnetic field B, 
the energy interval of Landau levels (LLs) in TLG is in a 
wavelength range from mid-infrared to near-infrared, which 
is technologically important for optoelectronics application. 
By applying a perpendicular electric displacement field D, a 
band gap is induced, and D hybridizes MLG-like and 
BLG-like bands in TLG, which appears as anti-crossings of 
LLs. Thus, ABA-stacked TLG has an electrical tunability of 
LLs in a large extent, which enables electrical tuning of cy-
clotron resonance (CR) magnetic field in TLG.  

To demonstrate the electrical tunability of CR signals in 
TLG, we fabricate a dual-gated TLG device in which we can 
control D by applying bias voltage to the top and bottom 
gate electrodes. Figs. 1a-c show the schematic illustrations 
and optical image of TLG device in the present work. After 
exfoliation of h-BN flakes onto a 290-nm-thick 
SiO2/p-doped Si substrate, TLG was transferred onto h-BN 
using a method based on polypropylene carbonate (PPC) 
[3,4]. Before capping it with another h-BN flake, we put 
electrodes on TLG by metal deposition of Pd 15 nm. Then 
the top h-BN layer was transferred onto the stack and a 
graphite (6~8 layers) was put on the top of it as a transparent 
top gate. Figs. 1d-g show color maps of the photo-induced 
voltage Vphoto at the charge neutrality point  = 0 irradiated 
by laser light of different wavelengths of  = 9.250, 9.552, 
10.247, and 10.611 µm, respectively, as a function of D and 

B. We set the Fermi energy at the charge neutrality point by 
sweeping VBG and VSD along the line of Rxx peak in VSD-VBG 
plot. In these maps, the peak position of Vphoto depends on D, 
drawing a curve which is symmetric to D = 0. These curves 
of Vphoto evidently shows that CR signals in TLG is distinctly 
modified by D. 

 To give an account for D dependence of CR signals, we 
calculated LL diagram by tight-binding approximation with 
different 1 ranging from 0 to 40 meV, where 1 is propor-
tional to D. Using the calculated LLs, we obtained a position 
of B for each 1 where the LL interval is equal to the energy 
of irradiated laser, where CR transition between LLs is al-
lowed. The numerical plot reproduces the experimental re-
sults quite well. These agreement of calculation and experi-
ment demonstrate that LLs in TLG is successfully tuned in 
our dual-gated TLG device. At the same time, CR signals 
directly reflects the energy interval of LLs, thus it can be 
utilized as a powerful probe to study LLs in TLG quantum 
Hall systems. 
 

 
Fig. 1 (a) Top- and (b) side-view schematics of the device structure. 
(c) Optical image of the device. (d-g) Color map of Vphoto as a func-
tion of D and B at  = 0 (experiment). 
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2. CR in graphene under double-moiré potentials 
   When the crystal axis of graphene is aligned to that of 
adjacent hexagonal boron nitride (h-BN), graphene’s band 
structure is modified by the moiré potentials induced at the 
interface, exhibiting unique physical phenomena such as 
Hofstadter butterfly. Recently, it was found that two coex-
isting moiré potentials in a h-BN/graphene/h-BN het-
erostructure interfere with each other to generate sec-
ond-order moiré potentials. Here, we study cyclotron reso-
nance (CR) in graphene in double-moiré potentials, which 
provide us a direct insight on Landau levels (LLs) in gra-
phene. 
 

 
Fig. 2 (a) Rxx vs VBG at T = 3 K and B = 0. Left inset: photograph of 
the device. Right inset: second-order moiré wavelength as a func-
tion of θ1 and θ2. (b) Rxx vs VBG and B at T = 3 K.  (c) Vphoto inten-
sity vs VBG and B with a light wavelength of λ = 10.611 μm. (d) 
Expanded view of the region in (c) indicated by the dashed-red 
outline. (e) Fitting to the experiment. (f) Experimental Vphoto map 
as a function of VBG and B with a light wavelength λ = 9.536μm. 
Yellow lines indicate the locations of  = 0, ±2, ±6. (g) Calculated 
BCR corresponding to the experimental CR map shown in (f). 
 
 
   We fabricated a h-BN/graphene/h-BN heterostructure by 
layer-by-layer assembly using a method based on polypro-
pylene carbonate (PPC). Rxx-VBG plot and Landau fan at T = 
1.6 K show satellite peaks very close to the Dirac point, 
which is an indicative of a moiré potential with a large pe-

riod [Figs. 2a,b]. From the position of these Rxx peaks, we 
estimated the lateral orientation angle θ between graphene 
and two h-BN sheets as θ~0.73° and ~1.01°. Next, we 
measured photo-induced voltage Vphoto under the irradiation 
of mid-infrared light at T = 3 K. By sweeping carrier density, 
we observed unique patterns of CR signals, which are dis-
tinct from those in conventional graphene without moiré 
potentials [Fig. 2c]. To account for the distinct signal pat-
terns, we consider electron-hole asymmetry in the Fermi 
velocity vF and a large bandgap  induced at the Dirac point 
[Figs. 2d,e]. Based on this model, we fitted the CR magnetic 
field BCR of these signals and derived vF = 1.10×106 m/s for 
electrons, vF = 1.07×106 m/s for holes, and  = 24 meV [Fig. 
2f]. We could precisely determine  and vF because BCR is 
highly sensitive to vF and that we could observe inter-band 
and intra-band LL transitions by sweeping carrier density. 
Besides, CR signals have a unique ring-like shape, which we 
attributed to the enhancement of spin splitting owing to 
many-body interaction [Fig. 2g]. Our work will aid in un-
derstanding the band structure of double-moiré graphene 
and also demonstrate that CR is a powerful tool to reveal the 
LL structures. 
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