ZrS₂ Ambipolar FETs with Schottky-Barrier Contact to Near-Midgap TiN Film Controlled by Top-Gate TiN/Al₂O₃ Stacks

Masaya Hamada, Kentaro Matsuura, Takuya Hamada, Iriya Muneta, Kuniyuki Kakushima, Kazuo Tsutsui and Hitoshi Wakabayashi

Tokyo Institute of Technology

4259, Nagatusuta, Midori-ku, Yokohama-shi, Kanagawa, Japan Phone: +81-45-924-5847 mail: hamada.m.af@m.titech.ac.jp

Abstract

ZrS₂ ambipolar Schottky barrier (SB) MISFETs are yielded in an operation with both electrons and holes. A layered polycrystalline ZrS₂ thin film was formed by sputtering and sulfur vapor annealing onto a whole surface of 2.4 cm x 2.4 cm SiO₂/Si substrate. A bunch of FETs has a top gate with TiN and Al₂O₃ stacks. Stable ambipolar I-V characteristics are confirmed with a V_{off} value of 0.4 V and an on/off current ratio of 250.

1. Introduction

The scaling of silicon FETs has currently reached down to 5-nm technology node [1,2], however a scaling of energy efficiency has been slowing down, and thus new materials are increasingly required for high-performance FETs. Two-dimensional transition metal dichalcogenide (TMDC) films have unique electrical and physical properties such as a high mobility despite an atomically-thin thickness [3,4,5]. Especially, a zirconium disulfide (ZrS₂) film has a calculated high mobility of more than 1,000 cm²V⁻¹s⁻¹ and band gap of about 1.1 eV. Although the chemical vapor deposition (CVD) method for the synthesis of ZrS_2 film has been reported [6,7], a large area formation has not been reported yet. On the other hand, we have reported that a large-area film formation of layered-polycrystalline ZrS2 having the high Hall-effect mobility of 1,250 cm²V⁻¹s⁻¹ was remarkably achieved by a sputtering and sulfur annealing [8].

In this study, we demonstrate MISFETs with ZrS_2 thinfilm formed by sputtering and sulfur vapor anneal having TiN contacts and a top gate TiN/Al₂O₃ stacks.

2. Device Fabrication

TiN source and drain (S/D) electrodes with 80-nm thickness were formed on a SiO₂/Si substrate by a sputtering and following wet etching. And a ZrS₂ film was formed by an ultra-high-vacuum (UHV) radio frequency (RF) magnetron sputtering tool with a ZrS₂ target of 99% [8]. Then, the sulfur vapor annealing was carried out for sulfur compensation, in which sulfur powder was evaporated at 250°C for 60 min, and wafers were heated at 700°C for 60 min in Ar flow under 100 Pa [8]. 20-nm-Al₂O₃ gate insulator was deposited by atomic layer deposition (ALD) at 300°C with tri-methyl aluminum (TMA) and H₂O precursors, and then an active area was defined by a photolithography and reactive ion etching (RIE). After those, 60-nm-SiN protection was constructed by sputtering and lift-off method, as shown in Figs. 1 and 2. A top gate of TiN film was formed by sputtering and wet etching. Then, S/D contacts through Al_2O_3 gate insulator were fabricated with RIE and sputtering. Finally, a forming gas (F.G.) annealing was conducted at 300°C for 10 min.

3. Results and Discussion

Fig. 3 indicates Id-Vgs characteristics of ZrS2 MISFETs with and without F.G. annealing at V_{ds} of 0.05 and 1.0 V. Clear ambipolar transfer characteristics are confirmed in the MISFET at V_{ds} of 1.0 V. The V_{off}, which is extracted at minimum Id, shifted to a positive side of Vgs. This is because positive fixed charges in the Al₂O₃ film are reduced by the F.G. annealing. Fig. 4 shows Id and Ig-(Vgs-Voff) characteristics of ZrS₂ MISFETs with and without F.G. annealing. It is speculated that drive-abilities are the same regardless of F.G. annealing. The reduction of the off-current is considered to be due to a termination of an edge of the ZrS2 channel by hydrogen. From Terada method [9], a parasitic-external resistance (R_{ext}) of 180 GQ-µm and 2 Δ L of -3.0 µm were estimated. Ambipolar gm characteristics of MISFETs with F.G. annealing are confirmed, as shown in Fig. 5. Because of smaller Voff of 0.4 V in this FET, an ambipolar operation of ZrS₂ FETs is explained by the SBFET model [10] in Fig. 6, regardless large electron affinity of 5.71 eV had been reported [5]. According to that, a work function of TiN contact is estimated as near the midgap of ZrS₂ film, and the electrons and holes mainly contribute to Ids in positive and negative Vgs, respectively. Fig. 7 shows (I_d , I_s and I_g)- V_{gs} characteristics in which the I_d value directly corresponds to the I_s value in high V_{gs} . In Figs. 8 (a) and (b), saturation characteristics of SBFETs are shown at a range of $V_{gs} = 0.5$ to -3.0 V for holes and at a range of $V_{gs} =$ 0.5 to 4.0 V for electrons, respectively. The parasitic resistance for holes is larger than that of electrons because the Fermi energy of ZrS₂ channel is upper than the intrinsic energy level.

Table 1 shows a benchmark of ZrS₂ MISFETs with different formation methods. Our FET is superior to other FETs in terms of a small $V_{\rm off}$ of 0.4 V and a high on/off current ratio of ~250, because the contact TiN WF is near a midgap in the bandgap of the sputtered ZrS₂ channel.

4. Conclusions

Chip-level-integrated ambipolar-ZrS₂-SBFETs operating with both holes and electrons were successfully achieved with a smaller V_{off} of 0.4 V for the first time, because of the Fermi level of the ZrS₂ film near the intrinsic energy level and the contact TiN WF near the midgap. This is an important milestone to realize unipolar ZrS₂ n/pFETs.

Acknowledgements

The authors would like to thank Dr. Takuya Hoshii for his warm support. This paper is partly supported by JST CREST and COI with grant numbers of JPMJCR16F4 and JPMJCE1309, respectively.

References

- [1] H. Wakabayashi, et al., IEEE Trans. Elec. Devices, (2006), 1961.
- [2] G. Yeap, et al., IEDM, (2019), 36.
- [3] D. Lembke, et al., Acc. Chem. Res., 48 (2015), 100.
- [4] W. Zhang, et al., Nano Research, 7 (2014), 1731.
- [5] C. Gong, et al., Appl. Phys. Lett., 107, (2015), 139904.
- [6] M. Zhang, et al., J. Am. Chem. Soc., 137, (2015), 7051.
- [7] X. Wang, et al., J. Mater. Chem. C, 4, (2016), 3143.
- [8] M. Hamada, et al., IEEE JEDS, 7, (2019), 1258.
- [9] K. Terada, Elect. Comm. JPN, 79, (1996), 43.
- [10] F. Wang, et al., Adv. Mat., 31, (2019), 1805317.

Fig. 3 I_d -V_{gs} characteristics of ZrS₂ MIS-FET w/ and w/o F.G. annealing for L_{ch} of 30 μ m and W of 80 μ m at V_{ds} of 1.0 V. V_{off} is extracted at minimum I_d.

Fig. 4 I_d and I_g-(V_{gs} - V_{off}) characteristics of ZrS₂ MISFET w/ F.G. annealing for L_{ch} of 30 μ m and W of 80 μ m at V_{ds} of 1.0 V.

Fig. 6 Band diagrams under different gate voltage ranges with the Schottky-barrier FET model using ZrS₂ FET. The close and open circles indicate electrons and holes, respectively.

Fig. 1 Cross-sectional schematic diagram Fig. 2 Optical image of ZrS₂ MISFET. of MISFET array

Fig. 5 g_m -(V_{gs} - V_{off}) characteristics of ZrS₂ MISFET w/ F.G. annealing for L_{eff} of 33 μ m and W of 80 μ m at V_{ds} of 1.0 V.

Fig. 7 Id, Is, & Ig -V_{gs} characteristics of ZrS_2 MISFET w/ F.G. annealing for L_{ch} of 30 μ m and W of 80 μ m at V_{ds} of 1.0 V.

Fig. 8 Saturation characteristics of ambipolar ZrS_2 MISFET w/ F.G. annealing for L_{eff} of 33 μ m and W of 80 μ m, operating with (a) hole and (b) electron.

Table 1: Benchmark of reported ZrS2 FETs with	dif-
ferent film formation methods.	

Method	Sputter this work	CVD [3]	CVD [4]
Precursors	ZrS ₂ &	ZrCl ₂ &	ZrCl ₂ &
	sulfur	sulfur	sulfur
Temp. [°C]	700	760~	950
Thick. [nm]	~5.0	0.71	a few-layers
Gate	Тор	Bottom	Bottom
Operation	Ambipolar	Unipolar (e)	Unipolar (e)
V _{off} [V]	0.4 (e/h both)	- 40	- 10
On/off	~ 250	~ 15	~ 25
Mobility	e: ~ 0.0001	0.1-0.8	~ 0.1
[cm ² V ⁻¹ s ⁻¹]	h: ~ 0.0001		