ALD-ZrO₂ Gate Dielectric with Suppressed Interfacial Oxidation for High Performance MoS₂ Top Gate MOSFETs

<u>Wen Hsin Chang</u>¹, Naoya Okada¹, Masayo Horikawa¹, Takahiko Endo², Yasumitsu Miyata² and Toshifumi Irisawa¹ ¹ National Institute of Advanced Industrial Science and Technology (AIST), Japan ² Department of Physics, Tokyo Metropolitan University, Japan Email: wh-chang@aist.go.jp

Abstract —To enhance the feasibility of 2D transition metal dichalcogenide channels in nano-electronic devices, a top gate device structure fabricated with Very-Large-Scale-Integration compatible process is desired. High-κ dielectric ZrO₂ has been directly deposited on MoS₂ through low temperature atomic layer deposition. Physical adsorption instead of chemical reaction was confirmed at the interface between ZrO₂ and MoS₂, which helps to suppress interfacial oxidation and reduce damage. While scaling down capacitance equivalent thickness of ZrO₂, low thermal budget post deposition annealing was effective for reducing interfacial traps, thus enhancing the device performances of monolayer MoS₂ nMOSFETs.

1. Introduction

Atomic-layer transition metal dichalcogenides (TMDCs) have attracted considerable attention owing to their promising properties for future nano-electronic applications. MoS2, a well-known TMDC channel material shows great potential in low-power-consumption device field. To fulfill the requirement of VLSI (Very-Large-Scale-Integration) applications, fabricating high performance top gate MoS₂ MOSFETs using chemical vapor deposition (CVD) grown MoS₂ with high quality gate dielectric is indispensable. However, because of the lack of surface dangling bonds, it is still very challenging to obtain high quality high-ĸ/MoS2 interface with low capacitance equivalent thickness (CET) through atomic layer deposition (ALD) approach [1,2]. Recently, we have reported uniform deposition of ZrO2 on CVD-grown MoS₂ by plasma enhanced ALD (PEALD) [3], which showed the decent device performance and high dielectric constant. Although high oxidation efficiency of PEALD promotes uniform layer deposition, the degradation of interfacial quality owing to MoS₂ oxidation was addressed. In order to further enhance device performance as well as gate control of channel, optimization of ALD processes not to damage the surface of 2D materials and CET scaling of ZrO2 are necessary.

In this work, uniform deposition of ZrO_2 as gate dielectrics on CVD-grown MoS₂ were obtained through ALD even at low deposition temperature at 150 °C, leading to significantly suppressed interfacial oxidation. The CET scaling of ZrO_2 down to 2.3 nm was also demonstrated. In addition, the top gate monolayer (1L) MoS₂ MOSFETs exhibited reduced subthreshold swing (SS) and improved hysteresis as the benefits of low temperature post deposition annealing (PDA) and CET scaling.

2. Experimental

The detailed process flow for fabricating 1L MoS_2 top gate MOSFETs is shown Fig 1(a). The schematic cross-

section and top view of optical microscope photograph of MoS_2 devices are shown in Fig. 1(b) and 1(c), respectively. Salt-assisted CVD was used to synthesize MoS_2 directly on SiO₂ (285 nm)/Si substrates using MoO_2 and sulfur powder. KBr was used as a growth promoter, as described previously [4]. After 1L MoS_2 growth, the S/D contacts were formed with photolithography and e-beam evaporation. Then, the ZrO₂ gate dielectrics were deposited at 150 °C thorough ALD using TEMAZ and H₂O as precursors with different deposition cycles, which denotes as LT-ALD afterwards. Finally, after 300 °C PDA in N₂ ambient, the top gate electrodes were deposited through e-beam evaporation. Top gate MoS_2 MOSFETs with PEALD ZrO₂ gate dielectrics deposited at 300 °C [3] were also prepared for comparison, which denotes as HT-PEALD afterwards.

Fig. 1(a) Process flow for fabricating MoS₂ top gate MOSFETs, (b) schematic cross-section and (c) top view of optical microscope photograph of the fabricated devices.

3. Results and Discussion

Fig. 2 shows the HR-TEM cross-sectional image of MoS_2 channel with LT-ALD ZrO_2 gate dielectric. The channel thickness of 0.7 nm, corresponding to 1L MoS_2 , is clearly seen with the abrupt ZrO_2/MoS_2 interface.

Fig. 2 HR-TEM cross-sectional images of 1L MoS_2 channel with ALD-ZrO_2 gate dielectric.

Fig. 3(a) shows Mo 3d XPS spectra extracted from 2nm-thick ZrO₂ on bulk MoS₂, which was mechanically exfoliated from MoS₂ flakes. The spectrum extracted from pristine MoS₂ flakes was also shown for comparison. The Mo 3d spectra for pristine and LT-ALD samples show similar feature with three peaks, which are attributed to the doublet of Mo⁴⁺ 3d_{3/2} and Mo⁴⁺ 3d_{5/2} and S²⁻ 2s states in MoS₂. This indicates the ZrO₂ deposition at 150 °C mainly results from physical absorption instead of chemical reaction between ZrO₂ and MoS₂. On the other hand, additional Mo⁶⁺ 3d_{3/2} and Mo⁶⁺ 3d_{5/2} states, correlating to MoO₃ were observed in HT-PEALD samples. This suggests the existence of Mo oxide interfacial layer owing to high oxidation efficiency of high temperature PEALD, which also explain the difficulty in obtaining device operation of 1L MoS₂ devices with PEALD ZrO₂ gate dielectrics [3]. Meanwhile, no obvious difference was observed in S 2p XPS spectra as shown in Fig. 3(b), which exhibited two peaks resulting from the doublet of S²⁻ 2p_{1/2} and S²⁻ 2p_{3/2} states in MoS₂. All these peaks are consistent with the reported values for MoS₂ crystal.

Fig. 3(a) Mo 3d and (b) S 2p XPS spectra extracted from HT-PEALD ZrO_2/MoS_2 , LT-ALD ZrO_2/MoS_2 and pristine MoS_2 , respectively.

The impact of ZrO_2 deposition on the device performance of MoS₂/SiO₂ back gate transistors was investigated. Fig. 4 shows the I_D - V_G transfer curves extracted from MoS₂ MOSFETs under back gate operation before and after ZrO₂ deposition on top of the MoS₂ surface. Even with 2-layer (2L) MoS₂ channel, those devices with HT-PEALD ZrO₂ demonstrate degraded features in terms of lower on-state current and worse SS after ZrO₂ deposition. On the other hand, no obvious degradation was found in LT-ALD 1L MoS₂ case, indicating the benefits of low temperature ALD process to suppress damages due to oxidation of MoS₂ surface. Less damage of MoS₂ channel with no interfacial layer is consistent with the result in Fig. 2.

Fig. 4 I_{D} - V_G transfer curves extracted from MoS₂ MOSFETs under back gate operation before and after (a) HT-PEALD and (b) LT-ALD ZrO₂ encapsulation on top of MoS₂ surface.

To understand the influence of low thermal budget PDA, Fig. 5 (a) shows the I_D - V_G characteristics of 5 µm-gatelength 1L MoS₂ MOSFETs under top gate operation measured before and after 300 °C PDA. Normal nMOSFETs operation behaviour was clearly observed with a high on-off ratio of 10⁷ after PDA. It was found the low thermal budget PDA is effective for reducing interfacial traps, since the SS drastically decrease from ~170 to ~90 mV/decade after PDA as shown in Fig. 5(b). As the scattering factor suppressed, enhanced on-state current was also obtained. (Fig. 5(a)) Besides, the drain induced barrier lowering (DIBL) was also significantly reduced, which may be attributed to the improvement of contact resistance after PDA.

Fig. 5 (a) I_D - V_G characteristics of 5 µm-gate-length 1L MoS₂ top gate MOSFETs measured before and after 300 °C PDA and (b) The I_D dependence of extracted SS.

The CET scaling effect on device performance was also characterized. Fig. 6(a) shows the split-CV curves at frequency of 10 kHz extracted from MoS₂ nMOSFETs with ZrO₂ deposited with ALD 50 and 100 cycles. Based on maximum C_{ox}, the CET was determined to be 2.3 and 4.4 nm. The dielectric constant of ZrO₂ was calculated to be 13.4 by using ZrO₂ physical thickness, which was relatively lower than that of HT-PEALD samples [3]. The deposition temperature induced phase transition may explain this phenomenon, and this can be avoided by optimizing ALD conditions and/or PDA. Fig. 6(b) shows gate hysteresis curves for 1L MoS₂ devices with different CET. Decent device performance maintained with CET shrinking down to 2.3 nm. Higher on-state current with reduced gate hysteresis, indicating the benefits of CET scaling.

Fig. 6(a) Split-CV characteristics at frequency of 10 kHz and (b) $I_{\rm D}$ - $V_{\rm G}$ hysteresis curves at $V_{\rm D}$ of 1 V extracted from 1L MoS₂ devices with different ALD growth cycles.

4. Conclusion

1L MoS₂ top gate MOSFETs using ALD ZrO₂ gate dielectrics has been demonstrated with VLSI-compatible gate stack formation processes. Low ALD deposition temperature promotes physical adsorption, leading to significantly suppressed surface oxidation and less damaged MoS₂ channel. Decent operation behavior maintained while ZrO₂ CET scaling down to 2.3 nm, indicating the low thermal budget process is beneficial for MoS₂ channel. Further CET scaling would be expected by ZrO₂ thickness scaling.

Acknowledgements

This work is supported by JST CREST, Grant Numbers JPMJCR16F3, Japan.

Reference

[1] H. Liu et al., *IEEE Electron Device Lett.* 33, 546 (2012).
[2] S. McDonnell et al., *ACS Nano* 7, 10354 (2013).
[3] W. H. Chang et al., *Silicon Nanoelectron. Workshop* 91 (2019).
[4] K. Kojima et al., *Nanoscale* 11, 12798 (2019)